Synthesis of Atropisomeric Korupensamines A and B
with different substituents. This fact, in concert with
ability of the tricarbonylchromium function to effectively
block one face of the arene ring, has allowed the use of
(arene)chromium complexes as synthetic intermediates,
chiral auxiliaries, and ligands for the asymmetric reac-
tions.8,9 As part of our asymmetric exploration of the
planar chiral arene chromium complexes, we have de-
veloped diastereoselective synthesis of axially chiral
biaryls in enantiomerically pure form.10 In this paper,
we report full details of total syntheses of korupen-
samines A and B and ent-korupensamine B using ste-
reoselective palladium(0)-catalyzed cross-coupling of pla-
nar chiral arylhalide chromium complexes with arylboronic
acid and subsequent axial isomerization or stereoselective
migration of the tricarbonylchromium fragment to an
inverted arene face.
F IGURE 1. Axially chiral naphthyltetrahydroisoquinoline
alkaloids.
Lipshutz et al. reported15 that palladium(0)-catalyzed
atropselective cross-coupling was achieved using a prop-
erly positioned internal phosphine group in the tetrahy-
droisoquinoline part as a coordinating ligand to afford a
single biaryl atropisomer for korupensamine A. The other
method for induction of the axial chirality other than
central bond formation developed by Bringmann et al.
is an attractive procedure for stereoselective synthesis
of korupensamines A and B from a common precursor
by a divergent lactone cleavage method with a chiral
reducing agent.16 As a further extension for the stereo-
selective axial bond formation utilizing the planar chiral
(arene)chromium complex, we investigated total synthe-
Resu lts a n d Discu ssion
Syn th esis of Kor u p en sa m in e A a n d en t-Kor u p en -
sa m in e B fr om a Com m on Ar en e Ch r om iu m Com -
p lex. Michellamine B, dimerization product of atropdi-
astereomeric korupensamines A and B, was found to be
fully protective against both HIV-1- and HIV-2-infected
CEMSS cells and identified by NCI for preclinical devel-
opment.11 These alkaloids have been isolated from the
tropical liana Ancistrocladus korupensis in Cameroon and
have a naphthyltetrahydroisoquinoline skeleton with
axial chirality between the naphthalene and tetrahy-
droisoquinoline rings (Figure 1).12 These alkaloids have
been previously synthesized via construction of the axial
bond between the naphthalene and tetrahydroisoquino-
line rings as a key step. However, palladium(0)-catalyzed
cross-coupling13 of two arene rings or nucleophilic addi-
tion14 of aryl Grignards to the chiral o-methoxyaryl
oxazoline compounds for the formation of the central
bond of the naphthalene and tetrahydroisoquinoline rings
usually gave various ratios of an atropisomeric mixture.
(11) (a) Manfredi, K. P.; Blunt, J . W.; Cardellina, J . H., II; McMahon,
J . B.; Pannell, L. L.; Cragg, G. M.; Boyd, M. R. J . Med. Chem. 1991,
34, 3402. (b) Boyd, M. R.; Hallock, Y. F.; Cardellina, J . H., II; Manfredi,
K. P.; Blunt, J . W.; McMahon, J . B.; Buckheit, R. W., J r.; Bringmann,
G.; Scha¨ffer, M.; Cragg, G. M.; Thomas, D. W.; J ato, J . G. J . Med. Chem.
1994, 37, 1740. (c) McMahon, J . B.; Currens, M. J .; Gulacowski, R. J .;
Buckheit, R. W., J r.; Lackman-Smith, C.; Hallock, Y. F.; Boyd, M. R.
Antimicrob. Agents Chemother. 1995, 39, 484. Korupensamines have
antimalarial activity: (d) Hallock, Y. F.; Manfredi, K. P.; Blunt, J . W.;
Cardellina, J . H., II; Scha¨ffer, M.; Gulden, K.-P.; Bringmann, G.; Lee,
A. Y.; Clardy, J .; Franc¸ois, G.; Boyd, M. R. J . Org. Chem. 1994, 59,
6349. (e) Manfredi, K. P.; Blunt, J . W.; Cardellina, J . H., II; McMahon,
J . B.; Pannell, L. L.; Cragg, G. M.; Boyd, M. R. J . Med. Chem. 1991,
34, 3402. (f) Hallock, Y. F.; Manfredi, K. P.; Dai, J . R.; Cardellina, J .
H., II; Gulakowski, R. J .; McMhon, J . B.; Scha¨ffer, M.; Stahl, M.;
Gulden, K. P.; Bringmann, G.; Franc¸ois, G.; Boyd, M. R. J . Nat. Prod.
1997, 60, 677. (g) Bringmann, G.; Pokorny, F. In The Alkaloids; Cordell,
G. A., Ed.; Academic Press: New York, 1995; Vol. 46, p 127.
(12) (a) Hallock, Y. F.; Manfredi, K. P.; Blunt, J . W.; Cardellina, J .
H., II; Scha¨ffer, M.; Gulden, K.-P.; Bringmann, G.; Lee, A. Y.; Clardy,
J .; Franc¸ois, G.; Boyd, M. R. J . Org. Chem. 1994, 59, 6349. (b)
Bringmann, G.; Gulden, K.-P.; Hallock, Y. F.; Manfredi, K. P.;
Cardellina, J . H., II.; Boyd, M. R.; Kramer, B.; Fleischhauer, J .
Tetrahedron 1994, 50, 7807.
(13) (a) Bringmann, G.; Go¨tz, R.; Harmsen, S.; Holenz, J .; Walter,
R. Liebig Ann. 1996, 2045. (b) Bringmann, G.; Go¨tz, R.; Keller, P. A.;
Walter, R.; Henschel, P.; Scha¨ffer, M.; Sta¨blein, M.; Kelly, T. R.; Boyd,
M. R. Heterocycles 1994, 39, 503. (c) Hoye, T. R.; Chen, M.; Hoang, B.;
Mi, L.; Priest, O. J . Org. Chem. 1999, 64, 7184. (d) Hoye, T. R.; Chen,
M. J . Org. Chem. 1996, 61, 7940. (e) Hobbs, P. D.; Upender, V.;
Dawson, M. I. Synlett 1997, 965. (f) Hobbs, P. D.; Upender, V.; Dawson,
M. I. Synlett 1997, 965. (g) Hoye, T. R.; Chen, M. Tetrahedron Lett.
1996, 37, 3099. (h) de Koning, C. B.; Michael, J . P.; van Otterlo, W. A.
L. Tetrahedron Lett. 1999, 40, 3037. (i) Rao, A. V.; Gurjar, M. K.;
Ramana, D. V.; Chheda, A. K. Heterocycles 1996, 43, 1. (j) Kelly, T. R.;
Garcia, A.; Lang, F.; Walsh, J . J .; Bhaskar, K. V.; Boyd, M. R.; Go¨tz,
R.; Keller, P. A.; Walter, R.; Bringmann, G. Tetrahedron Lett. 1994,
35, 7621. (k) Bringmann, G.; Hamm, A.; Schraut, M. Org. Lett. 2003,
5, 2805.
(7) (a) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J . Am. Chem.
Soc. 1988, 110, 8153. (b) Hayashi, T.; Niizuma, S.; Kamikawa, T.;
Suzuki, N.; Uozumi, Y. J . Am. Chem. Soc. 1995, 117, 9101. (c) Hayashi,
T. J . Organomet. Chem. 2002, 653, 41. (d) Spring, D. R.; Krishman,
S.; Blackwell, H. E.; Schreiber, S. L. J . Am. Chem. Soc. 2002, 124,
1354. (e) Yin, J .; Buchwald, S. L. J . Am. Chem. Soc. 2000, 122, 12051.
(f) Castanet, A.-S.: Colobert, F.; Broutin, P.-E.; Obringer, M. Tetra-
hedron: Asymmetry 2002, 13, 659. (g) Cammidge, A. N.; Cre´py, K. V.
L. Chem. Commun. 2000, 1723. (h) Herrbach, A.; Marinetti, A.;
Baudoin, O.; Gue´nard, D.; Gue´ritte, F. J . Org. Chem. 2003, 68, 4897.
(8) For some representative reviews: (a) Solladie´-Cavallo, A. In
Advances in Metal-Organic Chemistry; Liebeskind, L. S., Ed.; J AI
Press: Greenwich, CT, 1989; Vol. 1, p 99. (b) Davies, S. G.; Coote, S.
J .; Goodfellow, C. L. In Advances in Metal-Organic Chemistry; Liebe-
skind, L. S., Ed.; J AI Press: Greenwich, CT, 1991; Vol. 2, p 1. (c)
Uemura, M. In Advances in Metal-Organic Chemistry; Liebeskind, L.
S., Ed.; J AI Press: Greenwich, CT, 1991; Vol. 2, p 195. (d) Semmelhack,
M. F. In Comprehensive Organometallic Chemistry II; Abel, E. D.,
Stone, F. G. A., Wilkinson, Eds.; Pergamon Press: Oxford, 1995; Vol.
12, p 979. (e) Davies, S. G.; McCarthy, T. D. In Comprehensive
Organometallic Chemistry II; Abel, E. D., Stone, F. G. A., Wilkinson,
Eds.; Pergamon Press: Oxford, 1995; Vol. 12, p 1039.
(9) Some representative references: (a) Bolm, C.; Muniz, K. Chem.
Soc. Rev. 1999, 28, 51. (b) Uemura, M.; Miyake, R.; Nakayama, K.;
Shiro, M.; Hayashi, Y. J . Org. Chem. 1993, 58, 1238. (c) J ones, G. B.;
Huber, R. S.; Chapman, B. J . Tetrahedron: Asymmetry 1997, 8, 1797.
(d) Son, S. U.; J ang, H.-Y.; Lee, I. S.; Chung, Y. K. Organometallics
1998, 17, 3236.
(10) (a) Uemura, M.; Kamikawa, K. J . Chem. Soc., Chem. Commun.
1994, 2697. (b) Kamikawa, K.; Watanabe, T.; Uemura, M. J . Org.
Chem. 1996, 61, 1375. (c) Kamikawa, K.; Uemura, M. Synlett 2000,
938. (d) Kamikawa, K.; Watanabe, T.; Daimon, A.; Uemura, M.
Tetrahedron 2000, 56, 2325.
(14) (a) Chau, P.; Czuba, I. R.; Rizzacasa, M. A. J . Org. Chem. 1996,
61, 7101. (b) Rizzacasa, M. A.; Sargent, M. V. J . Chem. Soc., Perkin
Trans. 1 1991, 845. (c) Leighton, B. N.; Rizzacasa, M. A. J . Org. Chem.
1995, 60, 5702.
(15) Lipshutz, B. H.; Keith, J . M. Angew. Chem. 1999, 111, 3743.
Lipshutz, B. H.; Keith, J . M. Angew. Chem., Int. Ed. 1999, 38, 3530.
J . Org. Chem, Vol. 69, No. 12, 2004 4153