B.T. Thaker, R.S. Barvalia / Spectrochimica Acta Part A 84 (2011) 51–61
61
The Horowitz–Metzger equation [46,47]
[12] D.M. Boghaei, S. Mohebi, Tetrahedron 58 (2002) 5357–5366.
[13] A. Serrete, P.J. Carrol, T.M. Swager, J. Am. Chem. Soc. 114 (1992) 1887–1889.
[14] K. Nakajima, M. Kojima, S. Azuma, R. Kasahara, M. Tsuchimoto, Y. Kubozono,
Y. Maeda, H. Kashino, S. Ohba, Y. Yoshikawa, J. Fojita, J. Bull. Chem. Soc. Jpn. 69
(1996) 3207–3216.
[15] M. Kojima, H. Taguchi, M. Tsuchimoto, K. Nakajima, Coord. Chem. Rev. 237
(2003) 183–196.
[16] P. Nag, R. Bohra, R.C. Mehrotra, R. Ratnani, Transit. Met. Chem. 27 (2002)
321–325.
[17] R.J. Butcher, B.R. Penfold, E. Sinn, J. Chem. Soc. Dalton Trans. (1979) 668–675.
[18] (a) S. Deshayes, M. Liagre, A. Loupy, J. Luche, A. Petit, Tetrahedron 55 (1999)
10851–10870;
Cs = n1/(1−n)
,
Ws − Wf
W0 − Wf
Cs =
,
The above equation is used for the determination of the reaction
order, where Cs is the mass fraction of the substance, Ws stands
for the mass remaining at a given temperature, W0 and Wf are the
initial and final masses of the substance, respectively.
(b) R.S. Varma, Pure Appl. Chem. 73 (2001) 193–198;
(c) P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Tetrahedron 57 (2001)
9225–9583;
(d) S.H. Zhang, M.F. Tang, C.M. Ge, Z. Anorg. Allg. Chem. 635 (2009) 1442–1446;
(e) S.H. Zhang, Y. Song, H. Liang, M.H. Zeng, Cryst. Eng. Commun. 11 (2009)
865–872;
4. Conclusion
Microwave irradiation is becoming an increasingly popular
method of heating, which replaces classical heating because it
proves to be a clean and convenient method. It affords higher yields
and results in shorter reaction times. In microwave synthesis the
yield of all products are more than 75%. The reaction time is dras-
tically reduced to 1 min instead of 2–10 h in the classical method.
The IR and 1H NMR spectral data suggest that the unsymmetrical
be non-electrolytes. From the magnetic measurement, electronic
and ESR spectral data suggest that all the oxovanadium(IV) and
oxomolybdenum(V) complexes have distorted octahedral geom-
etry, shown in Figs. 13 and 14, respectively. The presence of one
coordinated water molecule in the oxovanadium(IV) complexes is
confirmed by thermal study such as TGA and DTG. Similarly, the
presence of one coordinated chlorine atom in the unsymmetri-
cal tetradentate Schiff base Mo(V)complexes is also confirmed by
thermal study TGA and DTG.
(f) S.H. Zhang, C. Feng, J. Mol. Struct. 977 (2010) 62–66;
(g) C.J. Millos, A.G. Whittaker, E.K. Brechin, Polyhedron 26 (2007) 1927–1933.
[19] B.T. Thaker, R.S. Barvalia, Spectrochim. Acta Part A 74 (2009) 1016–1024.
[20] B.S. Furniss, A.S. hannaford, V. Rogers, P.W.G. Smith, A.R. Tatchell (Eds.), Vogel’s
Text Book of Practical Organic Chemistry, fourth ed., ELBS Logman Group Ltd.,
London, 1978.
[21] B.T. Thaker, R.S. Barvalia, J. Coord. Chem. 63 (2010) 1597–1610.
[22] (a) M. Prasad, S.S. Dharmati, S.V. Gokhale, Proc. Ind. Acad. Sci. 20 A (1944) 224;
(b) C.N.R. Rao, University General Chemistry – An Introduction to Chemical
Science, first ed., Macmillan, India, 1973.
[23] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81–122.
[24] P.G. moe, R.B. Bhalvankar, J. Indian Chem. Soc. 81 (1) (2004) 13–17.
[25] P.J. bahad, N.S. bhave, S. Aswar, J. Indian Chem. Soc. 77 (8) (2000) 363–366.
[26] R.M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Com-
pounds, sixth ed., John Wiley & Sons, Inc., New York, 2002.
[27] D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to Spectroscopy, third ed.,
Thomson, Harcourt College Publishers, Orlando, FL, 2001.
[28] A.K. Abdulla, K.Z. Ismail, Can. J. Chem. 72 (1994) 1785–1788.
[29] P.S. Mane, S.G. Shirodakar, B.R. Arbad, T.K. Chondhekar, Indian J. Chem. 40A (6)
(2001) 648–651.
[30] W. Kemp, Organic Spectroscopy, second ed., Macmillan, London, 1991.
[31] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Com-
pounds, third ed., John Wiley & Sons, New York, 1978.
[32] K.R. Surti, B.T. Thaker, J. Coord. Chem. 59 (11) (2006) 1191–1202.
[33] T. Ghoshh, C. Bandyopadhyay, Trans. Met. Chem. 30 (2005) 404–410.
[34] I. Sakryan, N. Gunduz, T. Gunduz, Synth. React. Ingo. Met. Org. Chem. 31 (2001)
1175–1187.
[35] R.L. Datta, A. Syamal, Element of Magnetochemistry, second ed., 1993,
East–West, New Delhi.
[36] J. Selbin, G. Mans, D.L. Johnson, J. Inorg. Nucl. Chem. 29 (1967) 1735–1744.
[37] A. Syamal, M.R. Maurya, Coord. Chem. Rev. 95 (1989) 183–238.
[38] C.R. Cornman, J. Kamp, M.S. Lah, V.L. Pecorato, Inorg. Chem. 31 (1992)
2035–2043.
[39] P. Basu, S. Pal, A. Chakravarty, J. Chem. Soc. Dalton Trans. (1991) 3217–3221.
[40] G.R. Hausan, T.A. Kabanos, A.D. Keramidas, D. MEntzatos, A. Terzis, Inorg. Chem.
31 (1992) 2587–2594.
[41] H.A. Kuska, M.T. Rogers, Electron Spin Resonance of Transition Metal Complexes
Ions in Coordination Chemistry, Van-Nostrand Reinhdd Co., New York, 1971.
[42] A.E. Martell, Coordination Chemistry, VanNostrand Reinhold Co., New York,
1971.
[43] S.K. Gupta, D. Raina, Trans. Met. Chem. 22 (1997) 372–374.
[44] S.S. Dodwad, R.S. Dhamnaskar, P.S. Prabhu, Polyhedron 8 (1989) 1748–1750.
[45] A. Broido, J. Polym. Sci. 7A (1969) 1761–1773.
References
[1] D.M. Boghaei, S.J.S. Sabouncheib, S. Rayatib, Synth. React. Inorg. Met. Org. Chem.
30 (8) (2000) 1535–1545.
[2] A.A. Osowole, G.A. Kolawole, O.E. Fagade, Synth. React. Inorg. Met. Org. Chem.
35 (2005) 829–836.
[3] D.M. Boghaei, S. Mohebi, J. Chem. Res. 2001 (2001) 224–226.
[4] M. Lashanizadegan, D.M. Boghaei, Synth. React. Inorg. Met. Org. Chem. 31
(2001) 1519–1529.
[5] R. Atkins, G.A. Brewer, E. Kokot, G.M. Mockler, E. Sinn, Inorg. Chem. 24 (1985)
127–134.
[6] I. Rousso, N. Friedman, M. Sheves, M. Ottolenghi, Biochemistry 34 (1995)
12035–12059.
[7] J.P. Costes, M.I. Fernandes-Garcia, Inorg. Chim. Acta 237 (1995) 57–63.
[8] P.E. Aranha, M.P. Do Santo, S. Romera, E.R. Dockal, Polyhedron 26 (2007)
1373–1382.
[9] Z. Afrasiabi, E. Sinn, J. Chen, Y. Ma, A.L. Rheingold, L.N. Zakharov, N. Rath, S.
Padhye, Inorg. Chim. Acta 357 (2004) 271–278.
[10] D.C. Quenelle, K.A. Keith, E.R. Kern, Antiviral Res. 71 (2006) 24–30.
[11] H.A. Tang, L.F. Wang, R.D. Yang, Transit. Met. Chem. 28 (2003) 395–398.
[46] M. Sekerci, F. Yakuphanoglu, J. Therm. Anal. Calorim. 75 (2004) 189–195.
[47] H.H. Horowitz, G. Metzger, Anal. Chem. 35 (1963) 1464–1468.