ChemComm
Communication
In conclusion, in this work we have shown that ultrathin-
shell hollow nanomaterials can be prepared in a one-pot
process through an organometallic single-precursor approach.
We believe that more diverse nano-structured materials can be
prepared in one-pot by the delicate design of single precursors
with multi-elements with different electrochemical properties.
This work was supported by grants NRF-2012-004029 (Basic
Science Research Program) through the National Research
Foundation of Korea funded by the MEST. JX thanks for grants
NRF-2012-1040282 (Priority Research Centers Program) and
R31-2008-10029 (WCU program).
Notes and references
¨
1 Review: X. Chen, C. Li, M. Gratzel, R. Kostecki and S. S. Mao, Chem.
Soc. Rev., 2012, 41, 7909.
2 Recent review: Z.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell and
S.-G. Sun, Chem. Soc. Rev., 2011, 40, 4167.
3 (a) H. B. Wu, J. S. Chen, H. H. Hng and X. W. Lou, Nanoscale, 2012,
4, 2526; (b) P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and
J.-M. Tarascon, Nature, 2000, 407, 496.
4 Recent review: J. S. Chen, L. A. Archer and X. W. Lou, J. Mater. Chem.,
2011, 21, 9912.
5 Reviews: (a) L. Ji, Z. Lin, M. Alcoutlabi and X. Zhang, Energy Environ.
Sci., 2011, 4, 2682; (b) N.-S. Choi, Y. Yao, Y. Cui and J. Cho, J. Mater.
Chem., 2011, 21, 9825; selected examples: (c) A. M. Chockla,
J. T. Harris, V. A. Akhavan, T. D. Bogart, V. C. Holmberg,
C. Steinhagen, C. B. Mullins, K. J. Stevenson and B. A. Korgel,
J. Am. Chem. Soc., 2011, 133, 20914; (d) L. Xue, G. Xu, Y. Li, S. Li,
K. Fu, Q. Shi and X. Zhang, ACS Appl. Mater. Interfaces, 2013, 5, 21.
6 Selected examples: (a) X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee and L. A.
Archer, Adv. Mater., 2006, 18, 2325; (b) S. Ding and X. W. Lou, Nanoscale,
2011, 3, 3586; (c) Y. Chen, Q. Z. Huang, J. Wang, Q. Wang and J. M. Xue,
J. Mater. Chem., 2011, 21, 17448; (d) M. Zhang, D. Lei, X. Yu, L. Chen, Q. Li,
Y. Wang, T. Wang and G. Cao, J. Mater. Chem., 2012, 22, 23091.
7 Selected examples: (a) C.-C. Chang, S.-J. Liu, J.-J. Wu and C.-H. Yang,
J. Phys. Chem. C, 2007, 111, 16423; (b) W.-M. Zhang, J.-S. Hu, Y.-G. Guo,
S.-F. Zheng, L.-S. Zhong, W.-G. Song and L.-J. Wan, Adv. Mater., 2008, 20,
1160; (c) G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn and K. Kim,
J. Mater. Chem., 2009, 19, 8378; (d) Y. Yu, L. Gu, C. Zhu, P. A. van Aken and
J. Maier, J. Am. Chem. Soc., 2009, 131, 15984; (e) K.-C. Hsu, C.-E. Liu,
P.-C. Chen, C.-Y. Lee and H.-T. Chiu, J. Mater. Chem., 2012, 22, 21533.
8 G. Cui, Y.-S. Hu, L. Zhi, D. Wu, I. Lieberwirth, J. Maier and
K. Mu¨llen, Small, 2007, 3, 2066.
Fig. 4 (a) Cycling performance, (b) coulombic efficiencies, (c) charge–discharge
curves with a 50 mA gÀ1 current density and (d) current density-dependent
discharge capacities of the electrochemical cells prepared using US-HS.
maintained a discharge capacity of 857 mA h gÀ1 (based on the
weight of US-HS), which corresponds to 86% and 91% of the
theoretical maximum capacity of zerovalent tin and Sn0.8/(CoO)0.2
anode materials respectively.3b,15 Notably, in the last five cycles,
the change in discharge capacity was only within 3 mA h gÀ1. In
the literature, the sizes of zerovalent tin-based anode materials
were in the range of 10–100 nm.7,8 The lithium storage capacities
were observed to be in the range of 500–800 mA h gÀ1 7,8
.
Considering these values, it can be speculated that the high
capacity of electrochemical cells of US-HS and the stability
are attributed to the sub 10 nm size and hollow structure.16
Especially, it is noteworthy that the Li diffusion length corre-
sponds to the shell thickness of US-HS, which is B1.5 nm.
As shown in Fig. 4b, the coulombic efficiencies sharply
increased from 46% to 97% in the first 10 cycles and maintained
the higher values in successive runs. The charge–discharge curves
showed typical patterns of electrochemical cells based on the tin
alloying–de-alloying process (Fig. 4c).7,8 The shoulder peak in the
B1–1.5 V range in the first discharge curve is typically assigned to
the irreversible decomposition of the electrolyte or the formation
of SEI.7,8 The voltages below 1 V in Fig. 4c correspond to the
reversible delithiation–lithiation, and match well with the conven-
9 Selected examples: (a) J. Xu, K. Jang, J. Lee, H. J. Kim, J. Jeong,
J.-G. Park and S. U. Son, Cryst. Growth Des., 2011, 11, 2707;
(b) K. Jang, I.-Y. Lee, J. Xu, J. Choi, J. Jin, J. H. Park, H. J. Kim,
G.-H. Kim and S. U. Son, Cryst. Growth Des., 2012, 12, 3388.
10 (a) K. H. Park, K. Jang and S. U. Son, Angew. Chem., Int. Ed., 2006,
45, 4608; (b) K. H. Park, K. Jang and S. U. Son, Angew. Chem., Int. Ed.,
2007, 46, 1152; (c) K. H. Park, J. Choi, H. J. Kim, J. R. Ahn and
S. U. Son, Small, 2008, 4, 945; (d) K. H. Park, J. Choi, H. J. Kim,
J. B. Lee and S. U. Son, Chem. Mater., 2007, 19, 3861; (e) J. Xu,
K. Jang, I. G. Jung, H. J. Kim, D.-H. Oh, J. R. Ahn and S. U. Son,
Chem. Mater., 2009, 21, 4347; ( f ) J. Choi, N. Kang, H. Y. Yang,
H. J. Kim and S. U. Son, Chem. Mater., 2010, 22, 3586; (g) J. Choi,
J. Jin, I. G. Jung, J. M. Kim, H. J. Kim and S. U. Son, Chem. Commun.,
2011, 47, 5241; (h) J. Xu, K. Jang, J. Choi, J. Jin, J. H. Park, H. J. Kim,
D.-H. Oh, J. R. Ahn and S. U. Son, Chem. Commun., 2012, 48, 6244.
tional behavior of tin-based anode materials.7,8 The electrochemical 11 A. D. Beveridge and H. C. Clark, J. Organomet. Chem., 1968, 11, 601.
12 The diameters and shell thicknesses of 120 and 40 particles were
cells maintained good performance at higher current densities
measured respectively.
(Fig. 4d). At current densities of 100 mA gÀ1 and 200 mA gÀ1
,
13 J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook
of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., 1992.
14 The standard reduction potentials of Co2+ and Sn2+ are À0.28 V and
À0.14 V respectively.
the cells maintained discharge capacities of 802 mA h gÀ1 and
770 mA h gÀ1, corresponding to 81% and 78% of the theoretical
maximum capacity, respectively. Even with current densities of
0.5 A gÀ1 and 1 A gÀ1, the cells showed discharge capacities of
663 mA h gÀ1 and 578 mA h gÀ1, which are 67% and 58% of the
theoretical maximum capacity of tin, respectively, and much higher
than that of commercialized graphite (372 mA h gÀ1).
15 According to EDS and XPS analysis, US-HS contains 20% CoO
(theoretical capacity: 716 mA h gÀ1, ref. 3b). The theoretical maximum
capacity of US-HS can be estimated to be 937 mA h gÀ1
.
16 In comparison, the SnCo(1 : 1)Ox materials obtained after 30 min
and US-HS maintained 745 mA h gÀ1 and 947 mA h gÀ1 discharge
capacities after 10 cycles, respectively.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 5981--5983 5983