Organic Letters
Letter
Roux, C. Trends Org. Chem. 2006, 11, 65−80. (g) Hua, R. Curr. Org.
Synth. 2008, 5, 1−27. (h) Salvador, J. A. R.; Pinto, R. M. A.; Silvestre,
S. M. Curr. Org. Synth. 2009, 6, 426−470. (i) Salvador, J. A. R.; Pinto,
R. M. A.; Silvestre, S. M. Mini-Rev. Org. Chem. 2009, 6, 241−274.
(j) Bothwell, J. M.; Krabbez, S. W.; Mohan, R. S. Chem. Soc. Rev. 2011,
40, 4649−4707. (k) Ollevier, T. Org. Biomol. Chem. 2013, 11, 2740−
2755.
(8) Investigation of several transition-metal catalysts (5 mol%):
Sc(OTf)3, 40%; [ReBr(CO)3(thf)]3 (2.5 mol%), 12%; FeCl3, 37%;
Cu(OTf)2, 72%; AuCl3, 15%; In(OTf)3, 36%; BiCl3, 6%. The
following catalysts did not afford 3a: Re2(CO)10, Sm(OTf)3,
Yb(OTf)3, Fe(OTf)3, RhCl(PPh3)3, Ir4(CO)12, BiBr3.
formations as well as applications of the resulting aryl ethers are
currently in progress.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, spectroscopic data for all new
1
compounds, and copies of H and 13C NMR spectra. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Authors
■
(9) Investigation of solvents: toluene, quant; n-octane, quant; 1,4-
dioxane, 54%; MeCN, 0%; DMF, 0%; neat 90%.
(10) In the Bi(OTf)3-catalyzed reaction, the catalytic role of the
bismuth ion vs activity of TfOH formed by hydrolysis from residual
water is still under debate. See: (a) Lambert, R. F.; Hinkle, R. J.;
Ammann, S. E.; Lian, Y.; Liu, J.; Lewis, S. E.; Pike, R. D. J. Org. Chem.
2011, 76, 9269−9277. (b) Godeau, J.; Olivero, S.; Antoniotti, S.;
Notes
The authors declare no competing financial interest.
́
Dunach, E. Org. Lett. 2011, 13, 3320−3323. (c) Ollevier, T.; Nadeau,
E. Org. Biomol. Chem. 2007, 5, 3126−3134. When 5 mol% and 15 mol
% of TfOH was used, 3a was obtained in 66% and 68% yield,
respectively, indicating a difference in behavior between TfOH and
Bi(OTf)3 for this transformation.
(11) Cross-coupling reactions involving the cleavage of C(aryl)−OH
bonds in the presence of a nickel catalyst have been reported. See:
(a) Yu, D.-G.; Li, B.-J.; Zheng, S.-F.; Guan, B.-T.; Wang, B.-Q.; Shi, Z.-
J. Angew. Chem., Int. Ed. 2010, 49, 4566−4570. (b) Yu, D.-G.; Shi, Z.-J.
Angew. Chem., Int. Ed. 2011, 50, 7097−7100.
(12) For reviews on cross-coupling reactions via C−O bond cleavage,
see: (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.;
Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2010, 111, 1346−
1416. (b) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Acc. Chem. Res. 2010, 43,
1486−1495. (c) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.Eur.
J. 2011, 17, 1728−1759. (d) Tobisu, M.; Chatani, N. Top. Organomet.
Chem. 2013, 44, 35−54.
(13) Theoretical percentage of deuterium incorporation would be
75%, when 3 equiv of D2O was employed because one equiv of H2O
should be eliminated upon substitution of the hydroxy group of 1a
with D2O.
ACKNOWLEDGMENTS
■
This work was financially supported by a Grant-in-Aid (No.
26248030) from MEXT, Japan, and MEXT program for
promoting the enhancement of research universities. The
authors gratefully thank Mr. Ryo Okada and Masahiro
Nakamura (Okayama University) for HRMS measurements.
REFERENCES
■
(1) (a) Bedoukian, P. Perfumery and Flavouring Synthetics; Allured
Publishing Corp.; Wheaton, IL, 1986. (b) Howe-Grant, M., Ed. Kirk-
Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: New
York, 1995; Vol. 16, p 963. (c) Bauer, K.; Garbe, D.; Surburg, H.
Common Fragrance and Flavor Materials, 3rd ed.; Wiley-VCH:
Weinheim, Germany, 1997; p 76.
(2) (a) Lake, A. W.; Rose, C. J. US Patent 4,061,779, 1977.
(b) Harrington, P. J.; Lodewijk, E. Org. Process Res. Dev. 1997, 1, 72−
76. (c) Prabhakar, C.; Bakki Reddy, G.; Maheedhara Reddy, C.;
Nageshwar, D.; Sivalakshmi Devi, A.; Moses Babu, J.; Vyas, K.; Sarma,
M. R.; Om Reddy, G. Org. Process Res. Dev. 1999, 3, 121−125.
(d) Cole, G. M.; Frautschy, S. A. CNS Neurol. Disord.: Drug Targets
2010, 9, 140−148.
(3) (a) Williamson, A. Justus Liebigs Ann. Chem. 1851, 77, 37−49.
(b) Fuhrmann, E.; Talbiersky, J. Org. Process Res. Dev. 2005, 9, 206−
211.
(14) Acid scavengers, such as proton sponge and molecular sieves,
completely inhibited the reaction of 2-naphthol 1a with 1-hexanol 2a.
These proton scavengers may trap TfOH or decrease the Lewis acidity
of Bi(OTf)3.
(15) For reviews on C−CN bond cleavage, see: (a) Tobisu, M.;
Chatani, N. Chem. Soc. Rev. 2008, 37, 300−307. (b) Nakao, Y.;
Hiyama, T. Pure Appl. Chem. 2008, 80, 1097−1107. For recent
examples, see: (c) Nakai, K.; Kurahashi, T.; Matsubara, S. Org. Lett.
(4) The use of halides, which are usually derived from alcohols, limits
efficiency for overall yields and step economy. See: De La Mare, P. B.
Electrophilic Halogenation; Cambridge University Press: New York,
1976.
́
2013, 15, 856−859. (d) Tobisu, M.; Kinuta, H.; Kita, Y.; Remond, E.;
Chatani, N. J. Am. Chem. Soc. 2012, 134, 115−118. (e) Nakai, K.;
Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2011, 133, 11066−
11068.
(5) For selected examples, see: (a) Woiwode, T. F.; Rose, C.;
Wandless, T. J. J. Org. Chem. 1998, 63, 9594−9596. (b) Shintou, T.;
Mukaiyama, T. J. Am. Chem. Soc. 2004, 126, 7359−7367. (c) Maier, T.
C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594−4595. (d) Cano, R.;
(16) Kawai, N.; Abe, R.; Matsuda, M.; Uenishi, J. J. Org. Chem. 2011,
76, 2102−2114.
(17) For the unique σ- and π-activation by Bi(OTf)3, see:
Komeyama, K.; Takahashi, K.; Takaki, K. Org. Lett. 2008, 10, 5119−
5122. See also ref 16.
(18) Treatment of 2-naphthyl thioether D with 5 mol% of Bi(OTf)3
in toluene at 80 °C afforded naphtho[2,1-b]thiophene 6 in 76% yield.
We have also confirmed that conversion of D to 6 did not take place in
the absence of a Bi(OTf)3 catalyst.
(19) For Bi(OTf)3-catalyzed Claisen rearrangement of allyl naphthyl
ethers, see: Ollevier, T.; Mwene-Mbeja, T. M. Tetrahedron Lett. 2006,
47, 4051.
Ramon
́
, D. J.; Yus, M. J. Org. Chem. 2011, 76, 654−660. (e) Sach, N.
W.; Richter, D. T.; Cripps, S.; Tran-Dube,
́
M.; Zhu, H.; Huang, B.;
Cui, J.; Sutton, S. C. Org. Lett. 2012, 14, 3886−3889.
(6) (a) Liebermann, C.; Hagen, A. Chem. Ber. 1882, 15, 1427−1430.
(b) Fieser, L. F.; Lothrop, W. C. J. Am. Chem. Soc. 1935, 57, 1459−
1464. (c) Yagi, H.; Holder, G. M.; Dansette, P. M.; Hernandez, O.;
Yeh, H. J. C.; LeMahieu, R. A.; Jerina, D. M. J. Org. Chem. 1976, 41,
977−985. (d) Bell, K. H.; McCaffery, L. F. Aust. J. Chem. 1993, 46,
731−737. (e) Cazorla, C.; Pfordt, E.; Duclos, M.-C.; Met
Lemaire, M. Green Chem. 2011, 13, 2482.
́
ay, E.;
(7) (a) Organobismuth Chemistry; Suzuki, H.; Matano, Y., Eds.;
Elsvier: New York, 2001. (b) Briand, G. G.; Burford, N. Chem. Rev.
1999, 99, 2601−2657. (c) Roux, C. L.; Dubac, J. Synlett 2002, 181−
200. (d) Leonard, N. M.; Wieland, L. C.; Mohan, R. S. Tetrahedron
2002, 58, 8373−8397. (e) Gaspard-Iloughmane, H.; Le Roux, C. Eur.
J. Org. Chem. 2004, 2517−2532. (f) Gaspard-Iloughmane, H.; Le
D
dx.doi.org/10.1021/ol501744g | Org. Lett. XXXX, XXX, XXX−XXX