within these cells. The dynamic nature of the equilibrium
between microtubules and tubulin along with their involve-
ment in cell division has made them an important target in
anticancer research.5 Several agents that interact with tubulin,
such as the Vinca alkaloids, colchicine, podophyllotoxin,
maytansine, and the cryptophycins,6 disrupt this equilibrium
in favor of tubulin protein. Cryptophycin’s exceptional
potency has led to studies of other possible modes of action.7
Cryptophycin-1 (2) and -52 (3) stabilize microtubule dynam-
ics at low nanomolar concentrations which exhibit no effect
on the overall concentration of microtubules within the cell
but still lead to apoptosis.7b,8 Cryptophycin-52 (3) was
recently reported to be the most potent agent to cause the
expression of hyperphosphorylated Bcl2, rendering cancer
cells susceptible to apoptosis.4
Our continued interest in the interactions of these com-
pounds with tubulin protein led us to develop a novel, concise
approach toward the synthesis of the macrolide core of the
cryptophycins. Previous research with paclitaxel derivatives
in our laboratory utilized chiral â-lactam precursors as
reactive intermediates for incorporation of the phenylisoserine
side chain.16 Likewise, the presence of the â-amino acid
within the cryptophycin core provided a basis for our
retrosynthetic strategy (Figure 2). The key step would be
The potent bioactivity of the cryptophycins raised interest
in our group and others, leading to numerous reported formal9
and total syntheses.10 Significant structure-activity relation-
ship studies have also been carried out involving both
semisynthetic analogues derived from modifications of the
epoxide11 and synthetic analogues which differ in the tyrosine
fragment,12 â-amino acid moiety,13 or octadienoate ester
fragment14 or contain an isosteric replacement of the C5 ester
with an amide.15
(5) Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T. Med.
Res. ReV. 1998, 18, 259.
(6) (a) Smith, C. D.; Zhang, X.; Mooberry, S. L.; Patterson, G. M. L.;
Moore, R. E. Cancer Res. 1994, 54, 3779. (b) Kerksiek, K.; Mejillano, M.;
Schwartz, R. E.; Georg, G. I.; Himes, R. FEBS Lett. 1995, 377, 59. (c)
Smith, C. D.; Zhang, X. J. Biol. Chem. 1996, 271, 6192. (d) Bai, R.;
Schwartz, R. E.; Kepler, J. A.; Pettit, G. R.; Hamel, E. Cancer Res. 1996,
56, 4398. (e) Koiso, Y.; Morita, K.; Kobayashi, M.; Wang, W.; Ohyabu,
N.; Iwasaki, S. Chem.-Biol. Interact. 1996, 102, 183.
(7) (a) Mooberry, S. L.; Busquets, L.; Tien, G. Int. J. Cancer 1997, 73,
440. (b) Panda, D.; Himes, R. H.; Moore, R. E.; Wilson, L.; Jordan, M. A.
Biochemistry 1997, 36, 12048. (c) Kessel, D. J. Chromatogr. B 1999, 735,
121.
Figure 2. Retrosynthetic analysis of cryptophycin-24.
(8) Panda, D.; DeLuca, K.; Williams, D.; Jordan, M. A.; Wilson, L. Proc.
Natl. Acad. Sci. U.S.A. 1998, 95, 9313.
the closure to the macrocycle via an intramolecular reaction17
of the â-hydroxy group in the leucic acid ester component
with the activated acyl â-lactam.
To make the synthesis as concise as possible, the leucic
acid segment was introduced first by esterification of the
secondary alcohol9b 7 with acid chloride 6 derived from bis-
silylated L-leucic acid (Scheme 1).18 The p-methoxybenzyl
ether was deblocked using DDQ to provide the desired
primary alcohol. Oxidation of this alcohol was somewhat
problematic as basic oxidation conditions led to decomposi-
(9) (a) Ali, S. M.; Georg, G. I. Tetrahedron Lett. 1997, 38, 1703. (b)
Eggen, M.; Georg, G. I. Bioorg. Med. Chem. Lett. 1998, 8, 3177. (c)
Furuyama, M.; Shimizu, I. Tetrahedron: Asymmetry 1998, 9, 1351. (d)
Varie, D. L.; Brennan, J.; Briggs, B.; Cronin, J. S.; Hay, D. A.; Rieck, J.
A. I.; Zmijewski, M. J. Tetrahedron Lett. 1998, 39, 8405. (e) Liang, J.;
Hoard, D. W.; Khau, V. V.; Martinelli, M. J.; Moher, E. D.; Moore, R. E.;
Tius, M. A. J. Org. Chem. 1999, 64, 1459. (f) Fray, A. H. Tetrahedron:
Asymmetry 1998, 9, 2777.
(10) (a) Barrow, R. A.; Hemscheidt, T.; Liang, J.; Paik, S.; Moore, R.
E.; Tius, M. A. J. Am. Chem. Soc. 1995, 117, 2479. (b) Kobayashi, M.;
Wang, W.; Ohyabu, N.; Kurosu, M.; Kitagawa, I. Chem. Pharm. Bull. 1995,
43, 1598. (c) Salamonczyk, G. M.; Han, K.; Guo, Z.; Sih, C. J. J. Org.
Chem. 1996, 61, 6893. (d) Rej, R.; Nguyen, D.; Go, B.; Fortin, S.; Lavallee,
J.-F. J. Org. Chem. 1996, 61, 6289. (e) de Muys, J.-M.; Rej, R.; Go, B.;
Fortin, S.; Lavallee, J.-F. Bioorg. Med. Chem. Lett. 1996, 6, 1111. (f)
Dhokte, U. P.; Khau, V. V.; Hutchison, D. R.; Martinelli, M. J. Tetrahedron
Lett. 1998, 39, 8771. (g) White, J. D.; Hong, J.; Robarge, L. A. Tetrahedron
Lett. 1998, 39, 8779. (h) Kobayashi, M.; Kuroso, M.; Wang, W.; Kitagawa,
I. Chem. Pharm. Bull. 1994, 42, 2394. (i) White, J. D.; Hong, J.; Robarge,
L. A. J. Org. Chem. 1999, 64, 6206. (j) Gardinier, K. M.; Leahy, J. W. J.
Org. Chem. 1997, 62, 7098. (k) Ghosh, A. K.; Bischoff, A. Org. Lett. 2000,
2, 1573. (l) Christopher, J. A.; Kocienski, P. J.; Kuhl, A.; Bell, R. Synlett
2000, 4, 463. (m) Liang, J.; Moher, E. D.; Moore, R. E.; Hoard, D. W. J.
Org. Chem. 2000, 65, 3143. (n) Eggen, M.; Mossman, C. J.; Buck, S. B.;
Nair, S. K.; Bhat, L.; Ali, S. M.; Reiff, E. A.; Boge, T. C.; Georg, G. I. J.
Org. Chem. 2000, 65, 7792.
(13) Varie, D. L.; Shih, C.; Hay, D. A.; Andis, S. L.; Corbett, T. H.;
Gossett, L. S.; Janisse, S. K.; Martinelli, M. J.; Moher, E. D.; Schultz, R.
M.; Toth, J. E. Bioorg. Med. Chem. Lett. 1999, 9, 369.
(14) Al-Awar, R. S.; Ray, J.; Schultz, R.; Andis, S.; Worzalla, J.;
Kennedy, J.; Corbett, T. In American Association of Cancer Research; New
Orleans, LA, 1998; p 425.
(15) Norman, B. H.; Hemscheidt, T.; Schultz, R. M.; Andis, S. L. J.
Org. Chem. 1998, 63, 5288.
(16) Georg, G. I.; Ali, S. M.; Zygmunt, J.; Jayasinghe, L. R. Exp. Opin.
Ther. Pat. 1994, 4, 109 and references therein.
(11) (a) Trimurtulu, G.; Ogino, J.; Heltzel, C. E.; Husebo, T. L.; Jensen,
C. M.; Larsen, L. K.; Patterson, G. M. L.; Moore, R. E.; Mooberry, S. L.;
Corbett, T. H.; Valeriote, F. A. J. Am. Chem. Soc. 1995, 117, 12030. (b)
Georg, G. I.; Ali, S. M.; Stella, V. J.; Waugh, W. N.; Himes, R. H. Bioorg.
Med. Chem. Lett. 1998, 8, 1959.
(12) Patel, V. F.; Andis, S. L.; Kennedy, J. H.; Ray, J. E.; Schultz, R.
M. J. Med. Chem. 1999, 42, 2588.
(17) For other examples of â-lactam-mediated cyclizations, see: (a)
Romo, D.; Rzasa, R. M.; Shea, H. A.; Park, K.; Langenhan, J. M.; Sun, L.;
Akhiezer, A.; Liu, J. O. J. Am. Chem. Soc. 1998, 120, 12237. (b) Gardner,
B.; Nakanishi, H.; Kahn, M. Tetrahedron 1993, 49, 3433. (c) Saragovi, H.
U.; Fitzpatrick, D.; Raktabutr, A.; Nakanishi, H.; Kahn, M.; Greene, M. I.
Science 1991, 253, 792.
(18) Wissner, A.; Grudzinskas, C. V. J. Org. Chem. 1978, 43, 3972.
1814
Org. Lett., Vol. 3, No. 12, 2001