is currently underway with further discrete and polymeric
systems.
We are grateful to A. P. de Silva for valuable discussions.
Notes and references
1 (a) F. M. el Torki, R. H. Schmehl and W. F. Reed, J. Chem. Soc.,
Faraday Trans. 1, 1989, 85, 349; (b) M. Yashiro, K. Matysumoto
and S. Yoshikawa, Chem. Lett., 1989, 985; (c) D. W. Bruce,
J. D. Holbrey, A. R. Tajbakhsh and G. J. T. Tiddy, J. Mater.
Chem., 1993, 3, 905; (d) D. W. Bruce, I. R. Denby, G. J. T. Tiddy
and J. M. Watkins, J. Mater. Chem., 1993, 3, 911;
(e) J. D. Holbrey, G. J. T. Tiddy and D. W. Bruce, J. Chem.
Soc., Dalton Trans., 1995, 1769; (f) B. Donnio, Curr. Opin. Colloid
Interface Sci., 2002, 7, 371; (g) J. Bowers, M. J. Danks and
D. W. Bruce, Langmuir, 2003, 19, 292; (h) P. Ghosh, T. K. Khan
and P. K. Bharadwaj, Chem. Commun., 1996, 189; (i) I. A. Fallis,
P. C. Griffiths, P. M. Griffiths, D. E. Hibbs, M. B. Hursthouse and
A. L. Winnington, Chem. Commun., 1998, 665; (j) U. Maran,
H. Conley, M. Frank, A. M. Arif, A. M. Orendt, D. Britt,
V. Hlady, R. Davis and P. J. Stang, Langmuir, 2008, 24, 5400;
(k) C. Ferroud, H. Borderies, E. Lasri, A. Guy and M. Port,
Tetrahedron Lett., 2008, 49, 5972; (l) G. Zhou, J. He and
I. Harruna, J. Polym. Sci., Part A: Polym. Chem., 2007, 45,
4204; (m) A. Warshawsky, I. Rogachev, Y. Patil, L.
Baszkin, A. Weiner and J. Gressel, Langmuir, 2001, 17, 5621;
(n) E. Valls, A. Solsona, J. Suades, R. Mathieu, F. Comelles and
C. Lo
´
pez-Iglesias, Organometallics, 2002, 21, 2473.
2 For metal-containing covalent polymers adopting micellar
structures see: T. Gadt, N. S. Ieong, G. Cambridge,
¨
M. A. Winnik and I. Manners, Nat. Mater., 2009, 8, 144.
3 (a) S. J. Berners-Price, C. Brevard, A. Pagelot and P. J. Sadler,
Inorg. Chem., 1985, 24, 4287; (b) Y. Huahui, Z. Lansun, X. Yunjie
and Z. Qianer, Chin. J. Inorg. Chem., 1992, 8, 65; (c) S. J. Berners-
Price, R. J. Bowen, P. J. Harvey, P. C. Healy and
G. A. Koutsantonis, J. Chem. Soc., Dalton Trans., 1998, 1743;
(d) V. Saboonchian, G. Wilkinson, B. Hussainbates and
M. B. Hursthouse, Polyhedron, 1991, 10, 737; (e) S. L. James,
Chem. Soc. Rev., 2009, 38, 1744.
4 For overviews of micellar assembly containing the points raised here
see: (a) R. J. Stokes and D. F. Evans, Fundamentals of Interfacial
Engineering, Wiley-VCH, Inc., 1996, ch. 5; (b) J. H. Fendler,
Membrane Mimetic Chemistry, Wiley-Interscience, 1982.
Fig. 4 Modelled structures of [Ag(L1)2]+ (above) and [Ag2(L1)4]2+
(below) showing their pseudo-micellar structures. Piperazine
substituents = blue, Ag = white, and P = yellow. For clarity
H-atoms are not shown.
5 K. G. Furton and A. Norelus, J. Chem. Educ., 1993, 70, 254.
6 R. Strey, R. Schomacker, D. Roux, F. Nallet and U. Olsson,
¨
J. Chem. Soc., Faraday Trans., 1990, 86, 2253.
complexes which have micelle-like core–shell configurations.
Previous work on the aggregation of metal complexes
by hydrophobic interactions can be described as ‘metal-
complex-as-amphiphile’, because of the head-group-and-tail
structure of the complexes and the fact that non-covalent
aggregation preserves the original molecular species. However,
the situation here is better described as ‘metal-complex-
as-micelle’.8 This description relates to the structural
similarity of the complexes to micelles (core–shell) as well as
the fact that the larger species stabilised by hydrophobic
interactions is a single metal complex and not a non-covalent
aggregate.
7 Methods in Stereochemical Analysis, in Phosphorus-31 NMR
Spectroscopy in Stereochemical Analysis, ed. J. G. Verkade and
L. D. Quin, VCH Publishers Inc, Deerfield Beach, FL, 1987, vol. 8.
8 The complexes should not be confused with actual micelles
however, the latter being held together entirely by non-covalent
interactions with different thermodynamic implications. The
complexes here can be thought of as a type of ‘single-molecule
micelle’, see C. N. Moorefield and G. R. Newkome, C. R. Chim.,
2003, 6, 715, but which are constitutionally dynamic and responsive.
9 K. H. Shaughnessy, Chem. Rev., 2009, 109, 643; J. W. Ellis,
K. N. Harrison, P. A. T. Hoye, A. G. Orpen, P. G. Pringle and
M. B. Smith, Inorg. Chem., 1992, 31, 3026; D. J. Darensbourg,
J. B. Robertson, D. L. Larkins and J. H. Reibenspies,
Inorg. Chem., 1999, 38, 2473; I. T. Horvath, R. V.
´
Kastrup, A. A. Oswald and E. J. Mozeleski, Catal. Lett., 1989,
2, 85.
The concept may also be relevant to other metal complexes
based on hydrophobic ligands to which hydrophilic substituents
have been added (to render them water soluble). Examples of
such complexes can be found in homogeneous catalysis9
and medicinal chemistry.3c,10 It also points to a general
way of making coordination systems which respond to their
medium in ways typically associated with micelles. Work
10 E. Benelita, C. Levine, I. Ubarretxena-Belandia, A. Varela-
Ramirez, R. J. Aguilera, R. Ovalle and M. Contel, Eur. J. Inorg.
Chem., 2009, 3421; J. J. Liu, P. Galettis, A. Farr, A. Maharaj,
H. Samarasiha, A. C. McGechan, B. C. Baguley, R. J. Bowen,
S. J. Berners-Price and M. J. McKeage, J. Inorg. Biochem., 2008,
102, 303.
ꢀc
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 245–247 | 247