Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
CN
Cu(OTf)2 (15 mol%)
1,10-phen (15 mol%)
O
Ph
N
H
DOI: 10.1039/C9CC02030F
N
O
+
3a
+
Ph Ph
Matier, J. Schwaben, J. C. Peters and G. C. Fu, J. Am. Chem. Soc.,
2017, 139, 17707; (g) J. M. Ahn, J. C. Peters and G. C. Fu, J. Am.
Chem. Soc., 2017, 139, 18101.
BHT (2.0 equiv)
tBu
tBu
toluene, 80 o
C
(0%)
1a
(2.0 equiv)
2a
O
(1.0 equiv)
14
1a
(57% based on
)
10. D. M. Peacock, C. B. Roos and J. F. Hartwig, ACS Cent. Sci., 2016, 2,
647.
11. (a) R. Mao, J. Balon and X. Hu, Angew. Chem., Int. Ed., 2018, 57,
9501; (b) R. Mao, A. Frey, J. Balon and X. Hu, Nat. Catal., 2018, 1,
120.
12. Y. Liang, X. Zhang and D. W. C. MacMillan, Nature, 2018, 559, 83.
13. A. Kaga and S. Chiba, ACS Catal., 2017, 7, 4697.
Cu(OTf)2 (15 mol%)
1,10-phen (15 mol%)
O
Ph
N
H
N
N
O
O
+
3a
+
Ph Ph
CN
TEMPO (2.0 equiv)
toluene, 80 o
C
(0%)
1a
(2.0 equiv)
2a
15
1a
(60% based on
)
(1.0 equiv)
In summary, we have developed a copper-catalyzed direct
C(sp3)–N coupling of cycloketone oxime esters and nitrogen
nucleophiles. This reaction protocol is featured with wide
functional-group compatibility and broad substrate scope. All
of the N-aryl/alkylanilines, anilines and benzophenone imine
could be employed as the nitrogen nucleophiles to react with
cyclobutanone or cyclopentanone oxime esters for the
efficient assembly of a variety of 1º, 2º and 3º alkyl amines.
These resultant cyano-containing alkyl amines were further
shown to be versatile building blocks in a variety of chemical
transformations. Further applications and mechanistic studies
are in progress in our laboratory.
14. For a selected review, see: W. Yin and X. Wang, New J. Chem.,
2019, 43, 3254. For selected examples with transition metal
catalysts, see: (a) H.-B. Yang and N. Selander, Chem. Eur. J., 2017,
23, 1779; (b) B. Zhao and Z. Shi, Angew. Chem., Int. Ed., 2017, 56,
12727; (c) Y.-R. Gu, X.-H. Duan, L. Yang and L.-N. Guo, Org. Lett.,
2017, 19, 5908; (d) L. Yang, P. Gao, X.-H. Duan, Y.-R. Gu and L.-N.
Guo, Org. Lett., 2018, 20, 1034; (e) J.-F. Zhao, X.-H. Duan, Y.-R. Gu,
P. Gao and L.-N. Guo, Org. Lett., 2018, 20, 4614; (f) J.-F. Zhao, P.
Gao, X.-H. Duan and L.-N. Guo, Adv. Synth. Catal., 2018, 360, 1775;
(g) J. Wu, J.-Y. Zhang, P. Gao, S.-L. Xu, and L.-N. Guo, J. Org. Chem.,
2018, 83, 1046; (h) J.-Y. Zhang, X.-H. Duan, J.-C. Yang and L.-N. Guo,
J. Org. Chem., 2018, 83, 4239; (i) D. Ding and C. Wang, ACS Catal.,
2018, 8, 11324. (j) Y.-R. Gu, X.-H. Duan, L. Chen, Z.-Y. Ma, P. Gao
and L.-N. Guo, Org. Lett., 2019, 21, 917.
15. For selected examples with photoredox catalysis, see: (a) L. Li, H.
Chen, M. Mei and L. Zhou, Chem. Commun., 2017, 53, 11544; (b)
X.-Y. Yu, J.-R. Chen, P.-Z. Wang, M.-N. Yang, D. Liang and W.-J. Xiao,
Angew. Chem., Int. Ed., 2018, 57, 738; (c) X.-Y. Yu, Q.-Q. Zhao, J.
Chen, J.-R. Chen and W.-J. Xiao, Angew. Chem., Int. Ed., 2018, 57,
15505; (d) Z.-Y. Ma, L.-N. Guo, Y.-R. Gu, L. Chen and X.-H. Duan,
Adv. Synth. Catal., 2018, 360, 4341; (e) P.-Z. Wang, X.-Y. Yu, C.-Y. Li,
B.-Q. He, J.-R. Chen and W.-J. Xiao, Chem. Commun., 2018, 54,
9925; (f) B.-Q. He, X.-Y. Yu, P.-Z. Wang, J.-R. Chen and W.-J. Xiao,
Chem. Commun., 2018, 54, 12262; (g) X. Shen, J.-J. Zhao and S. Yu,
Org. Lett., 2018, 20, 5523.
We thank the financial support from the NSFC (21702027,
21602016), Fundamental Research Funds for the Central
Universities (2412017QD010, 2412019FZ017), Scientific
Research Foundation of Education Department of Jilin
Province (JJKH20180013KJ) and Young Scientific Research
Foundation of Jilin Province (20180520228JH).
Conflicts of interest
The authors declare no competing financial interest.
16. For C–O and C–N3 bonds formation, see: (a) W. Ai, Y. Liu, Q. Wang,
Z. Lu and Q. Liu, Org. Lett., 2018, 20, 409; (b) M. M. Jackman, S. Im,
S. R. Bohman, C. C. L. Lo, A. L. Garrity and S. L. Castle, Chem. Eur. J.,
2018, 24, 594; (c) B. Zhao, H. Tan, C. Chen, N. Jiao and Z. Shi, Chin.
J. Chem., 2018, 36, 995; (d) B. Zhao, C. Chen, J. Lv, Z. Li, Y. Yuan and
Z. Shi, Org. Chem. Front., 2018, 5, 2719.
17. For C–S, C–Se and C–Te bonds formation, see: (a) M. He, Z. Yan, F.
Zhu and S. Lin, J. Org. Chem., 2018, 83, 15438; (b) D. Anand, Y. He,
L. Li and L. Zhou, Org. Biomol. Chem., 2019, 17, 533; (c) M. Zheng,
G. Li and H. Lu, Org. Lett., 2019, 21, 1216;
Notes and references
1. (a) S. A. Lawrence, Amines: Synthesis Properties and Applications,
Cambridge University Press, Cambridge, 2004; (b) A. Ricci, Amino
Group Chemistry: From Synthesis to the Life Sciences, Wiley-VCH,
Weinheim, 2008; (c) S. Funayama and G. A. Cordell, Eds., Alkaloids:
A Treasure of Poisons and Medicines, Academic Press: Waltham,
MA, 2015.
2. R. N. Salvatore, C. H. Yoon and K. W. Jung, Tetrahedron, 2001, 57,
7785.
3. A. F. Abdel-Magid and S. J. Mehrman, Org. Process Res. Dev., 2016,
10, 971.
18. For C–B bonds formation, see: J.-J. Zhang, X.-H. Duan, Y. Wu, J.-C.
Yang and L.-N. Guo, Chem. Sci., 2019, 10, 161.
4. (a) R. T. Gephart and T. H. Warren, Organometallics, 2012, 31,
7728; (b) Y. Park, Y. Kim and S. Chang, Chem. Rev., 2017, 117,
9247; (c) D. Hazelard, P.-A. Nocquet and P. Compain, Org. Chem.
Front., 2017, 4, 2500.
19. (a) F. F. Fleming, Nat. Prod. Rep., 1999, 16, 597; (b) J. S. Miller and
J. L. Manson, Acc. Chem. Res., 2001, 34, 563; (c) F. F. Fleming, L.
Yao, P. C. Ravikumar, L. Funk, and B. C. Shook, J. Med. Chem., 2010,
53, 7902.
5. L. Huang, M. Arndt, K. Gooßen, H. Heydt and L. J. Gooßen, Chem.
Rev., 2015, 115, 2596.
6. G. C. Fu, ACS Cent. Sci., 2017, 3, 692.
20. L. Legnani, B. N. Bhawal, B. Morandi, Synthesis, 2017, 49, 776.
21. (a) G. Mann, J. F. Hartwig, M. S. Driver and C. Fernández-Rivas, J.
Am. Chem. Soc., 1998, 120, 827; (b) J. P. Wolfe, J. Åhman, J. P.
Sadighi, R. A. Singer and S. L. Buchwald, Tetrahedron Lett., 1997,
38, 6367; (c) S. Kramer, Org. Lett., 2019, 21, 65.
22. Alkyl-Cu(III) intermediate could also undergo syn-elimination
to generate an alkene, see: A. Faulkner, N. J. Race, J. S. Scott
and J. F. Bower, Chem. Sci., 2014, 5, 2416. In the current
reaction, we proposed that the coordination of nitrogen
nucleophiles made the Cu(III) intermediates crowded, which
could accelerate the reductive elimination process.
7. T.-Y. Luh, M.-k. Leung and K.-T. Wong, Chem. Rev., 2000, 100, 3187.
8. S. A. Macgregor, G. W. Neave and C. Smith, Faraday Discuss., 2003,
124, 111.
9. (a) A. C. Bissember, R. J. Lundgren, S. E. Creutz, J. C. Peters and G.
C. Fu, Angew. Chem., Int. Ed., 2013, 52, 5129; (b) H.-Q. Do, S.
Bachman, A. C. Bissember, J. C. Peters and G. C. Fu, J. Am. Chem.
Soc., 2014, 136, 2162; (c) Q. M. Kainz, C. D. Matier, A. Bartoszewicz,
S. L. Zultanski, J. C. Peters and G. C. Fu, Science, 2016, 351, 681; (d)
W. Zhao, R. P. Wurz, J. C. Peters and G. C. Fu, J. Am. Chem. Soc.,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins