We thank EPSRC for financial support (GR/K97301) and for
access to facilities at the National Mass Spectrometry Service
Centre, and Dr Georgina Rosair for X-ray crystallography.
Notes and references
† Selected data (J values in Hz): 8: mp 162–164 °C; [a]D +235.2 (c 1.05,
CHCl3); dH (400 MHz, CDCl3) 1.39 (6H, s, CMe2), 3.90 (1H, dd, Jgem 15.2,
J 0.9, 6a-H), 4.07 (1H, dd, Jgem 15.2, J 1.1, 6b-H), 4.34 (1H, m, 4-H), 4.39
(1H, m, 5-H), 4.87 (1H, dd, J 5.1, 3.8, 3-H), 7.12 (1H, t, J 2.9, 2-H); 4·HCl:
[a]D +52.2 (c 0.67, MeOH); dH (400 MHz, CD3OD) 1.74–1.82 (1H, m, 6a-
H), 1.89–2.13 (3H, m, 6b-H and 7-H2), 3.06 (1H, dd, Jgem 12.8, J12a,11 2.4,
12a-H), 3.26 (1H, br ddd, J ~ 10, ~ 8, 2.9, 8-H), 3.31 (1H, dd, Jgem 12.8,
J12b,11 1.8, 12b-H), 3.36 (3H, s, OMe), 3.44–3.54 (2H, m, 4-H, 5-H), 3.64
(1H, dd, J3,4 9.1, J3,2 3.2, 3-H), 3.80 (1H, dd, J2,3 3.2, J 1.8, 2-H), 3.86–3.93
(2H, m, 9-H, 10-H), 4.00 (1H, m, 11-H), 4.62 (1H, d, J1,2 1.8, 1-H). 17: [a]D
253.5 (c 0.99, CHCl3); dH [400 MHz, (CDCl2)2, 120 °C] 2.10 (1H, dt, Jgem
12.6, J7a,6 ~ J7a,8 ~ 9.0, 7a-H), 2.20 (1H, br s, OH), 2.45 (1H, ddd, Jgem
12.6, J7b,6 7.0, J7b,8 3.8, 7b-H), 2.93–3.00 (1H, m, H-6), 2.96 (1H, dd, Jgem
11.0, J2b,3 3.5, 2b-H), 3.03 (1H, dd, Jgem 11.0, J2a,3 6.0, 2a-H), 3.57 (1H,
dd, J5A,8 7.4, J5A,4A 1.75, 5A-H), 3.92 (1H, br q, J ~ 4.4, 3-H), 4.00 (1H, t, J ~
5.0, 4-H), 4.15 (1H, t, J ~ 5.7, 5-H), 4.17 (1H, dd, J2A,1A 4.95, J2A,3A 2.3, 2A-H),
4.20 (1H, dd, J4A,3A 7.9, J4A,5A 1.8, 4A-H), 4.22 (1H, ddd, J8,7a 8.65, J8,5A 7.5,
J
8,7b 3.8, 8-H), 4.48 (1H, dd, J3A,4A 7.9, J3A,2A 2.3, 3A-H), 5.38 (1H, d, J1A,2A 4.95,
1A-H).
‡ It is possible that the cyclisations of A and/or B occur through the
intermediacy of geminal bis(hydroxylamine)s (see ref. 13). In a similar
cyclisation to form a stereoisomer of 8, we have also isolated and fully
characterised an N-hydroxy-2-hydroxylaminopiperidine as a byproduct (V.
Vivien, unpublished results).
§ endo-Transition states are disfavoured for cyclic nitrones on steric
grounds; see, e.g. J. J. Tufariello in 1,3-Dipolar Cycloaddition Reactions,
Vol 2, ed. A. Padwa, Academic Press, New York, 1983, p. 83.
crystallographic files in .cif format.
Scheme 2 Reagents and conditions: i, PCC, DCM, then Ph3PMe·Br,
KHMDS, 278 °C to rt; ii, toluene, reflux (84%); iii, Ac2O, DMAP,
pyridine; iv, Mo(CO)6, MeCN–H2O, reflux; v, BnOCOCl, Na2CO3, acetone
(67% from 13); vi, excess (Im)2CNS, (CH2Cl)2, reflux, 2 h, then Bu3SnH,
AIBN, toluene, reflux (81% from 14); vii, NaOMe, MeOH; viii, H2,
Degussa Pd/C, MeOH; ix, HCl, MeOH (80% from 15).
1 Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond, ed.
A. E. Stütz, Wiley–VCH, Weinheim, 1999.
2 e.g. A. Karpas, G. W. J. Fleet, R. A. Dwek, S. Petursson, S. K.
Namgoong, N. G. Ramsden, G. S. Jacob and T. W. Rademacher, Proc.
Natl. Acad. Sci. USA, 1988, 85, 9229.
3 G. D. Dimitriadis, P. Tessari, V. L. W. Go and J. E. Gerich, Metabolism,
1985, 34, 261.
4 M. J. Humphries, K. Matsumoto, S. L. White and K. Olden, Cancer
Res., 1986, 46, 5215; P. E. Goss, M. A. Baker, J. P. Carver and J. W.
Dennis, Clin. Cancer Res., 1995, 1, 935.
5 e.g. G. Legler, in Carbohydrate Mimics, ed. Y. Chapleur, Wiley–VCH,
Weinheim, 1998, p. 463.
6 e.g. (a) P. B. Anzeveno, L. J. Creemer, J. K. Daniel, C.-H. R. King and
P. S. Liu, J. Org. Chem., 1989, 54, 2539; (b) M. Horsch, L. Hoesch, A.
Vasella and D. M. Rast, Eur. J. Biochem., 1991, 197, 815; (c) W. Dong,
T. Jespersen, M. Bols, T. Skrydstrup and M. R. Sierks, Biochemistry,
1996, 35, 2788.
7 L. Sun, P. Li, N. Amankulor, W. Tang, D. W. Landry and K. Zhao,
J. Org. Chem., 1998, 63, 6472.
8 (a) B. A. Johns, Y. T. Pan, A. D. Elbein and C. R. Johnson, J. Am. Chem.
Soc., 1997, 119, 4856; (b) C. R. Johnson and B. A. Johns, Tetrahedron
Lett., 1997, 38, 7977; (c) J. L. Asensio, F. J. Cañada, A. García-Herrero,
M. T. Murillo, A. Fernández-Mayoralas, B. A. Johns, J. Kozak, Z. Zhu,
C. R. Johnson and J. Jiménez-Barbero, J. Am. Chem. Soc., 1999, 121,
11 318.
9 M. A. Leewenburgh, S. Picasso, H. S. Overkleeft, G. A. van der Marel,
P. Vogel and J. H. van Boom, Eur. J. Org. Chem., 1999, 1185.
10 For a review, see: K. W. Moremen, R. B. Trimble and A. Herscovics,
Glycobiology, 1994, 4, 113.
11 For the synthesis by a different approach of another aza-C-disaccharide
involving the same iminoalditol see: C. Marquis, S. Picasso and P.
Vogel, Synthesis, 1999, 1441.
Scheme 3 Reagents and conditions: i, toluene, reflux (88%); ii, Ac2O,
DMAP, pyridine (82%); iii, Mo(CO)6, MeCN–H2O, reflux; iv, BnOCOCl,
Na2CO3, acetone; v, excess (Im)2CNS, (CH2Cl)2, reflux, then Bu3SnH,
AIBN, toluene, reflux; vi, NaOMe, MeOH, rt, 1.5 h; vii, H2, Pd/C, MeOH;
viii, HCl, MeOH, rt, 24h (48% overall from 18).
12 M. Morita, E. Sawa, K. Yamaji, T. Sakai, T. Natori, Y. Kuezuka, H.
Fukushima and K. Akimoto, Biosci. Biotech. Biochem., 1996, 60,
288.
6-H and 7b-H, between 7a-H and both 5-H and 8-H, and
between 5A-H and both 6-H and 7b-H; these last interactions,
and the observed value of 7.4 Hz for J5A,8 imply a preferred
rotamer about the C-8–C-5A bond as indicated in 17 (for 13, J5A,8
= 2.4 Hz). This, and the configuration of 17, was confirmed by
X-ray crystallography of the crystalline O-acetyl derivative 18.
Reduction of 18, followed by N-protection and deoxygenation
under conditions of high concentration, gave 19, deprotected as
indicated in Scheme 3 to give the aza-C-disaccharide 20, as an
anomeric mixture (a+b, 5+2), in 48% overall yield from 18.
13 For a similar cyclisation to give a nitrone related to
L-fucose, see A. Peer
and A. Vasella, Helv. Chim. Acta, 1999, 82, 1044.
14 M. Ito, M. Maeda and C. Kibayashi, Tetrahedron Lett., 1992, 33, 3765,
and references therein.
15 S. Cicchi, A. Goti, A. Brandi, A. Guarna and F. De Sarlo, Tetrahedron
Lett., 1990, 31, 3351.
16 O. Jarreton, T. Skrydstrup, J.-F. Espinosa, J. Jiménez-Barbero and J.-M.
Beau, Chem. Eur. J., 1999, 5, 430.
17 A. J. Blake, R. O. Gould, R. M. Paton and A. A. Young, J. Chem. Res.,
1993, (S) 482, (M) 3173, and refs. therein.
2128
Chem. Commun., 2000, 2127–2128