384 Yamada et al.
Sch em e 6. Syn th esis of Tetr a p olym er
Macromolecules, Vol. 37, No. 2, 2004
(5) (a) Lin, Q.; Steinha¨usler, T.; Simpson, L.; Wilder, M.; Me-
deiros, D. R.; Willson, C. G.; Havard, J . M.; Fre´chet, J . M. J .
Chem. Mater. 1997, 9, 1725. (b) Havard, J . M.; Shim, S. Y.;
Fre´chet, J . M. J .; Lin, Q.; Medeiros, D. R.; Willson, C. G.;
Byers, J . D. Chem. Mater. 1999, 11, 719. (c) Havard, J . M.;
Yoshida, M.; Pasini, D.; Vladimirov, N.; Fre´chet, J . M. J .;
Medeiros, D. R.; Patterson, K.; Yamada, S.; Willson, C. G.;
Byers, J . D. J . Polym. Sci., Part A 1999, 37, 1225. (d) Havard,
J . M.; Vladimirov, N.; Frechet, J . M. J .; Yamada, S.; Willson,
C. G.; Byers, J . D. Macromolecules 1999, 32, 86.
(6) Darling, G. D.; Vekselman, A. M.; Yamada, S. Proc. SPIE
1998, 3333, 438.
(7) Yamada, S.; Medeiros, D. R.; Patterson, K.; J en, W. K.; Rager,
T.; Lin, Q.; Lenci, C.; Byers, J . D.; Havard, J . M.; Pasini, D.;
Fre´chet, J . M. J .; Willson, C. G. Proc. SPIE 1998, 3333, 245.
(8) Yamada, S.; Owens, J .; Rager, T.; Nielsen, M.; Byers, J . D.;
Willson, C. G. Proc. SPIE 2000, 3999, 365.
(9) March, J . In Advanced Organic Chemistry, Reactions, Mech-
anisms, and Structure, 4th ed.; J ohn Wiley and Sons: New
York, 1992; p 627.
(10) Westheimer, F. H.; J ones, W. A. J . Am. Chem. Soc. 1941, 63,
3283.
(11) Cram, D. J .; Haberfield, P. J . Am. Chem. Soc. 1961, 83, 2354.
(12) Takagi, W.; Ueyama, K.; Minamida, I.; Kim, Y. H.; Ikeda,
Y.; Oae, S. Bull. Chem. Soc. J pn. 1966, 39, 917.
(13) (a) Willson, C. G.; Cameron, J . F.; MacDonald, S. A.; Niesert,
C. P.; Fre´chet, J . M. J .; Leung, M. K.; Ackman, A. Proc. SPIE
1993, 1926, 354. (b) Fre´chet, J . M. J .; Leung, M.; Urankar,
E. J . Chem. Mater. 1997, 9, 2887.
6ib. Further adjustments of the copolymer ratio, the
formulation of the photoresist, and the process param-
eters, should provide even better imaging quality.
Con clu sion
(14) Hall, G. A. J . Am. Chem. Soc. 1949, 71, 2691.
(15) Polyacrylates (20 wt %) and TPS-SbF6 (PAG, 1 wt % to
polymer) were dissolved in THF. The solutions were spin-
coated on silicon wafers and baked (PAB) at 100 °C for 60 s.
The baked films were exposed to 248 nm light (20 mJ /cm2)
and scraped off the wafers for thermal gravimetric analysis.
(16) Trefonas, P.; Szmanda, C.; Barclay, G.; Blacksmith, R.;
Kavanagh, R.; Monaghan, M.; Coley, S.; Mao, Z.; Taylor, G.
Proc. Soc. Plast. Eng., Oct. 6-8, McAfee, NJ 1997, 11, 44.
(17) Dale, W. J .; Starr, L.; Strobel, C. W. J . Org. Chem. 1961, 26,
2225.
(18) (a) Hutchins, R. O.; Rotstein, D.; Natale, N.; Fanelli, J . J .
Org. Chem. 1976, 41, 3228. (b) Wright, A. D.; Haslego, M.
L.; Smith, F. X. Tetrahedron Lett. 1979, 25, 2325.
(19) The gel formation was observed only with the monosubsti-
tuted Meldrum’s acid, 4. Disubstituted Meldrum’s acid (not
reported here) and the opened forms (5tb, 5ib) were polym-
erized without a gel formation. This could be due to the highly
acidic R-hydrogen of Meldrum’s acid (pKa ) 4.8). We believe
that the R-hydrogen could be easily abstracted during the
radical polymerization, forming a stable radical, and this
radical initiated the growth of polymer chain, causing the
gel formation.
An aqueous processable positive tone resist material
was designed using a combination of a decarboxylation
reaction and an acid-catalyzed reaction of esters. This
aqueous resist system possesses both high etching
resistance and high resolution. The thermal stability of
the ester group to decarboxylation conditions is critical
for the system to function as a positive tone resist. In
this regard, isobornyl esters showed stability that is
superior to tert-butyl esters. The kinetics of the decar-
boxylation reaction were studied with time-resolved FT-
IR, and it was found that the rate of decarboxylation is
highly dependent upon substituents on the malonate
moiety. Steric hindrance at the R-position played an
important role to prevent anhydride formation during
decarboxylation while increasing the hydrophobicity of
the polymers. On the basis of these findings, we opti-
mized a composition of tetrapolymer, and high-resolu-
tion imaging was demonstrated with DUV exposure.
(20) J unek, H.; Ziegler, E.; Herzog, U.; Kroboth, H. Synthesis
1976, 332.
Ack n ow led gm en t. We thank International SE-
MATECH and Shipley Co. for kindly providing us the
opportunity to perform the imaging experiments at their
facilities as well as the helpful assistance. Financial
funding from Semiconductor Research Corp., Interna-
tional SEMATECH, Intel Corp., and the Welch Founda-
tion is gratefully acknowledged. Special thanks to Prof.
J . M. J . Fre´chet for valuable technical discussions.
(21) (a) Ihara, M.; Takahashi, M.; Niitsuma, H.; Taniguchim, N.;
Yasui, K.; Fukumoto, K. J . Org. Chem. 1989, 54, 5413. (b)
Ihara, M.; Takahashi, M.; Niitsuma, H.; Taniguchim, N.;
Yasui, K.; Fukumoto, K. J . Chem. Soc. PT1 1991, 525.
(22) Yamada, S.; Rager, T.; Owens, J .; Byers, J . D.; Nielsen, M.;
Willson, C. G. ACS Polym. Prepr. 2000, 87.
(23) Deprotection of the ester was assumed negligible, and this
was validated by TGA, IR spectroscopy, and 1H NMR study
(ref 22), all of which indicated no thermal deprotection.
(24) Wallraff, G.; Hutchinson, J .; Hinsberg, W.; Houle, F.; Seidel,
P.; J ohnson, R.; Oldham, W. J . Vac. Sci. Technol. B 1994,
12, 3857.
(25) The normalized intensity after completion of decarboxylation
varies because the initial intensity contains some inherent
errors. At the very early stage of baking, the casting solvent
evaporates, the wafers take about 10 s to reach thermal
equilibrium, and signal-to-noise ratio of spectra is much
higher than that for longer baking time. These factors all
affect the final intensity, and thus the final normalized
intensity also changes.
Su p p or tin g In for m a tion Ava ila ble: Details of monomer
and polymer syntheses and characterization. This material is
Refer en ces a n d Notes
(1) (a) Environmental issues caused by the “greenhouse” effect:
Bradford, D. F. Nature (London) 2001, 410, 649. (b) Solvents
and birth defects: Seppa, N. Sci. News Onl. 1999, 155. (c)
Environmental issues in electronics manufacturing: Ellis, B.
Circuit World 2000, 26 (2), 17.
(2) Yamada, S. Dissertation, The University of Texas at Austin,
2000.
(26) Arrhenius plots of polymer 6ib, 8ib, and 14ib are shown in
Figure 18 in the Supporting Information.
(27) Willson, C. G. In Thompson, L. F., Willson, C. G., Bowden,
M. J ., Eds.; Introduction to Microlithography, 2nd ed.;
American Chemical Society: Washington, DC, 1994; p 139.
(3) Ichimura, K. J . Polym. Sci., Part A: Polym. Chem. 1982, 20,
1411.
(4) Taylor, L. D.; Kolesinski, H. S.; Edwards; B.; Haubs, M.;
Ringsdorf, H. J . Poly. Sci., Polym. Lett. 1988, 26, 177.
MA034461R