4078
M. Chakrabarty et al. / Tetrahedron Letters 43 (2002) 4075–4078
reasons, viz. (i) it is fast and efficient, employs a cheap,
non-toxic and reusable clay as the catalyst and involves
a simple work-up; (ii) it furnishes DIAs 3c–d from
nitrobenzaldehydes 2c–d exceedingly fast (5 min) and in
excellent yields (]95%) in contrast to a recent slow (10
h) synthesis (using lithium perchlorate as catalyst) with
moderate yield (67%);19 (iii) on hydrazinolysis, the
phthalimido-DIA 3p produced the corresponding diin-
dolylethylamine (3: X=Y=H; R,R%=H, CH2NH2)
much faster (6.5 h) and in a better yield (92%) than its
earlier three-step synthesis from indole and glyoxylic
acid (>80 h; 32%).20 Our method has enormous poten-
tial in the synthesis of naturally occurring DIAs, upon
which we have recently embarked.
10. (a) Chakrabarty, M.; Basak, R.; Ghosh, N. Tetrahedron
Lett. 2001, 42, 3913; (b) Chakrabarty, M.; Sarkar, S.
Tetrahedron Lett. 2002, 43, 1351.
11. Laszlo, P. Science 1987, 235, 1473.
12. Zee, S. H.; Chen, C. S. J. Chin. Chem. Soc. 1974, 21, 229;
Chem. Abstr. 1975, 82, 125215y.
13. Suda, K.; Takanami, T. Chem. Lett. 1994, 1915.
14. (a) Balmer, C. T.; Kinder, H.; Gutman, L. J. Med. Chem.
1965, 8, 397; (b) Akgun, E.; Pindur, U.; Muller, J. J.
Heterocycl. Chem. 1983, 20, 1303.
15. 5: Orange prisms, mp 218–220°C (pet. ether–CH2Cl2);
yield: 124 mg (63%); IR: 3396, 1520, 1348, 744 cm−1; MS:
m/z 395 (M+), 265 (100%), 235, 219–217, 204, 131, 130;
1H NMR (CDCl3; 500 MHz): l 2.11 (6H, s, 2×CH3), 6.75
(1H, s, Ar3CH), 7.12 and 7.15 (2H, t each, J 7.5 Hz), 7.21
(2H, d, J 8 Hz), 7.23 (1H, d, J 8.5 Hz), 7.45 and 7.51 (1H,
t, each J 7.5 Hz), 7.54 (2H, d, J 7.5 Hz), 7.59 (2H, br s,
2×NH), 7.94 (1H, d, J 8 Hz); 13C NMR (CDCl3; 125
MHz): l 8.8 (2×CH3), 37.7 (Ar3CH), 111.3, 119.1, 120.1,
122.5, 125.8, 128.9, 131.1, 133.8 (all Ar-CH), 109.9, 129.9,
131.8, 135.6, 135.8, 149.4 (all Ar-C).
Acknowledgements
The authors express their sincere thanks to the Direc-
tor, Bose Institute for providing laboratory facilities,
Mr. B. Majumdar (NMR Laboratory, B.I.), Professor
D. E. Games and Mrs. B. K. Stein (University of
Swansea Wales, UK) for recording the Mass spectra
and the CSIR, Govt. of India for financial support (a
project to M.C., N.G. and an ad hoc fellowship to
R.B.).
16. 6: Yellow prisms, mp 222–224°C (pet. ether–CH2Cl2);
yield: 54 mg (27%); IR: 3449, 3396, 1520, 1354, 738 cm−1
;
MS: m/z 395 (M+), 265 (100%), 235, 219–217, 204, 131,
1
130; H NMR (CDCl3; 500 MHz): l 2.18 and 2.26 (3H s
each, 2×CH3), 6.58 (1H, s, Ar3CH), 6.41–6.89 (1H, m),
7.09–7.22 (6H, m), 7.44–7.50 (2H, m), 7.51 and 7.82 (1H,
br s each, 2×NH), 7.56 (1H, d, J 8 Hz), 7.58 (1H, d, J 8.5
Hz), 8.01–8.06 (1H, m); 13C NMR (CDCl3; 125 MHz): l
8.8 and 10.1 (2×CH3), 53.1 (Ar3CH), 110.1, 111.4, 119.6,
119.7, 120.1, 120.2, 122.7, 123.2, 124.4, 126.1, 129.3,
129.7 (all Ar-CH), 112.0, 112.2, 129.46, 129.49, 129.8,
134.3, 134.9, 135.9, 136.7, 148.5 (all Ar-C).
References
1. (a) Fischer, E. Liebigs Ann. Chem. 1887, 242, 372; (b)
Noland, W. E.; Robinson, D. N. Tetrahedron 1958, 14,
68.
17. (a) Ciamician, G.; Plancher, G. Chem. Ber. 1896, 29,
2475; (b) Jackson, A. H.; Smith, P. Tetrahedron 1968, 24,
2227; (c) Jackson, A. H.; Naidoo, B.; Smith, P. Tetra-
hedron 1968, 24, 6119.
2. Chakrabarty, M.; Basak, R.; Harigaya, Y. Heterocycles
2001, 55, 2431.
18. In a typical experiment, a solution of indole (1a; 1 mM)
and thiophene-2-carboxaldehyde (2g; 0.5 mM) in CH2Cl2
(2 ml) was adsorbed on Montmorillonite K10 clay (2 g),
and the solvent was allowed to evaporate at rt. After
completion of the reaction (TLC), the organic matter was
leached with CH2Cl2 (3×15 ml), filtered, the solvent
removed from the filtrate and the residue crystallised
from pet. ether–CH2Cl2 to furnish 3g as red prisms, mp
188–190°C; 132 mg (80%); IR: 3403, 745 cm−1; MS: m/z
328 (M+; 100%), 295, 243, 210, 117; 1H NMR (CDCl3;
500 MHz): l 6.15 (1H, s, Ar3CH), 6.81 (2H, s), 6.88–6.93
(2H, m), 7.02 (2H, t, J 7.5 Hz), 7.14 (1H, dd, J 5, 1 Hz),
7.16 (2H, t, J 7.5 Hz), 7.33 (2H, t, J 8 Hz), 7.45 (2H, d,
J 8 Hz), 7.88 (2H, s, 2×NH); 13C NMR (CDCl3; 125
MHz): l 35.7 (Ar3CH), 111.5, 119.7, 120.18, 122.4, 123.5,
124.0, 125.5, 126.8 (all Ar-CH), 120.10, 127.1, 136.9,
149.0 (all Ar-C). All products were identified by IR
3. (a) Sundberg, R. J. The Chemistry of Indoles; Academic
Press: New York, 1970; p. 39; (b) Remers, W. A. In The
Chemistry of Heterocyclic Compounds; Houlihan, W. J.,
Ed.; Wiley-Interscience: New York, 1972; p. 1.
4. Porter, J. K.; Bacon, C. W.; Robbins, J. D.; Himmels-
bach, D. S.; Higman, H. C. J. Agric. Food Chem. 1977,
25, 88.
5. (a) Osawa, T.; Namiki, M. Tetrahedron Lett. 1983, 24,
4719; (b) Fahy, E.; Potts, B. C. M.; Faulkner, D. J.;
Smith, K. J. Nat. Prod. 1991, 54, 564; (c) Bell, R.;
Carmeli, S.; Sar, N. J. Nat. Prod. 1994, 57, 1587; (d)
Bifulco, G.; Bruno, I.; Riccio, R.; Lavayre, J.; Bourdy, G.
J. Nat. Prod. 2000, 63, 596.
6. Kamal, A.; Qureshi, A. A. Tetrahedron 1963, 19, 512.
7. Chen, D.; Yu, L.; Wang, P. G. Tetrahedron Lett. 1996,
37, 4467.
8. (a) Singh, H.; Sarin, R.; Singh, K. Heterocycles 1986, 24,
3039; (b) Singh, H.; Singh, K. Tetrahedron 1988, 44,
5897.
1
(nujol), MS (EI/CI), H (CDCl3; 500 MHz) and 13C (125
MHz) NMR, DEPT 135 spectra and, for new com-
pounds, additionally by elemental analysis and/or HR
EI/CI-MS.
9. (a) Denis, J.-N.; Mauger, H.; Vallee, Y. Tetrahedron Lett.
1997, 38, 8515; (b) Chalaye-Mauger, H.; Denis, J.-N.;
Averbuch-Pouchot, M.-T.; Vallee, Y. Tetrahedron 2000,
56, 791.
19. Yadav, J. S.; Reddy, B. V. S.; Murthy, Ch. V. S. R.;
Kumar, G. M.; Madan, Ch. Synthesis 2001, 787.
20. Julia, M.; Tilly, G. Bull. Soc. Chim. Fr. 1965, 2175.