LETTER
Synthesis of Dithiocarbamates
2799
(4) (a) Chen-Hsien, W. Synthesis 1981, 622. (b) Mizunom, T.;
Nishiguchi, I.; Okushi, T.; Hirashima, T. Tetrahedron Lett.
1991, 32, 6867. (c) Chen, Y. S.; Schuphan, I.; Casida, J. E.
J. Agric. Food Chem. 1979, 27, 709. (d) Rafin, C.; Veignie,
E.; Sancholle, M.; Postal, D.; Len, C.; Villa, P.; Ronco, G. J.
Agric. Food Chem. 2000, 48, 5283.
(5) (a) Nieuwenhuizen, P. J.; Ehlers, A. W.; Haasnoot, J. G.;
Janse, S. R.; Reedijk, J.; Baerends, E. J. J. Am. Chem. Soc.
1999, 121, 163. (b) Thorn, G. D.; Ludwig, R. A. The
Dithiocarbamates and Related Compounds; Elsevier:
Amsterdam, 1962. (c) Nice, H. R. Org. React. 1962, 12, 57;
and references cited therein.
Generally, the reaction is experimentally simple and pro-
ceeding well under solvent-free conditions without using
a catalyst at room temperature and generating virtually no
byproducts. This methodology is compatible with various
a,b-unsaturated ketones, esters, nitriles, amides, and dif-
ferent substituted amines under mild reaction conditions.
Equally important is the wide scope, high selectivity, and
nearly quantitative yields of this transformation, which
lead to significant structural diversity in the products, that
is not possible with the older procedures.
In summary, we have described a novel system that is
quite effective and entirely green procedure for the
synthesis of dithiocarbamates at room temperature. The
mild reaction conditions, enhanced reaction rates, clean
reaction profiles, operational and experimental simplicity,
and with options of further transformations of the
resulting dithiocarbamates into synthetically interesting
biologically active compounds, this synthetic methodolo-
gy is ideally suited for automated applications in organic
synthesis.
(6) (a) Ronconi, L.; Marzano, C.; Zanello, P.; Corsini, M.;
Miolo, G.; Macca, C.; Trevisan, A.; Fregona, D. J. Med.
Chem. 2006, 49, 1648. (b) Walter, W.; Bode, K.-D. Angew.
Chem., Int. Ed. Engl. 1967, 6, 281. (c) Elgemeie, G. H.;
Sayed, S. H. Synthesis 2001, 1747.
(7) (a) Hogarth, P. G. Inorg. Chem. 2005, 53, 7. (b) Zhao, Y.;
Perez-Segarra, W.; Shi, Q.; Wei, A. J. Am. Chem. Soc. 2005,
127, 7328. (c) Griffin, T. S.; Woods, T. S.; Klayman, D. L.
In Advances in Heterocyclic Chemistry, Vol. 18; Katritzky,
A. R.; Boulton, A. J., Eds.; Academic Press: New York,
1975, 99.
(8) (a) Tilles, H. J. Am. Chem. Soc. 1959, 81, 714. (b) Chin-
Hsien, W. Synthesis 1981, 622. (c) Sugiyama, H. J. Synth.
Org. Chem. Jpn. 1980, 38, 555. (d) Walter, W.; Bode, K.-D.
Angew. Chem., Int. Ed. Engl. 1967, 6, 281.
(9) (a) Guo, B.; Ge, Z.; Chang, T.; Li, R. Synth. Commun. 2001,
31, 3021. (b) Ziyaei-Halimjani, A.; Saidi, M. R. J. Sulfur
Chem. 2005, 26, 149.
(10) (a) Azizi, N.; Saidi, M. R. Org. Lett. 2005, 7, 3649.
(b) Azizi, N.; Aryanasab, F.; Torkiyan, L.; Ziyaei, A.; Saidi,
M. R. J. Org. Chem. 2006, 71, 3634. (c) Azizi, N.;
Torkiyan, L.; Saidi, M. R. Org. Lett. 2006, 8, 2079.
(d) Azizi, N.; Aryanasab, F.; Saidi, M. R. Org. Biomol.
Chem. 2006, 4, 4275.
(11) (a) Azizi, N.; Saidi, M. R. Eur. J. Org. Chem. 2003, 4630.
(b) Azizi, N.; Saidi, M. R. Tetrahedron 2004, 60, 383.
(c) Azizi, N.; Saidi, M. R. Organometallics 2004, 23, 1457.
(d) Azizi, N.; Yousefi, R.; Saidi, M. R. J. Organomet. Chem.
2006, 691, 817.
General Procedure for the One-Pot Reaction of Amines, CS2,
and Michael Acceptor Under Solvent-Free Conditions
Amine (4.5 mmol) was added slowly to the mixture of CS2 (5
mmol) and the Michael acceptor (4 mmol) into a test tube in an ice
bath12 and the reaction mixture was stirred at 0 °C for 30 min. Then,
the mixture was warmed to r.t. and stirred for another 1–12 h. After
completion of the reaction, the excess of CS2 and amine was re-
moved under reduced pressure to give the dithiocarbamates in the
almost pure form. The crude product was analyzed by 1H NMR and
13C NMR. In some cases, further purification was carried out by re-
crystallization or short-column chromatography on silica gel
(EtOAc–PE). All compounds were characterized on the basis of
1
NMR spectroscopic data (in the case of primary amines, the H
NMR spectra shows mixture of E- and Z-isomers).
(12) The reaction was very exothermic and should be controlled
by slow addition of amine and maintaining the temperature
by using an ice bath.
Acknowledgment
We are grateful to the Sharif University of Technology Research
Council and Chemistry and Chemical Research Center of Iran for
financial support of this research.
(13) Selected Spectroscopic Data
Table 1, Entry 1: 1H NMR (500 MHz, CDCl3): d = 0.92–
0.96 (6 H, m), 2.53 (2 H, t, J = 6.7 Hz), 3.12 (2 H, t, J = 6.2
Hz), 3.42 (2 H, q, J = 6.7 Hz), 3.67 (2 H, t, J = 6.7 Hz).
13C NMR (125 MHz, CDCl3): d = 9.4, 11.7, 18.2, 32.0, 47.2,
49.9, 118.6, 192.7.
References and Notes
Table 1, Entry 2: 1H NMR (500 MHz, CDCl3): d = 1.30–
1.51 (6 H, m), 2.74 (2 H, t, J = 6.2 Hz), 3.39 (2 H, t, J = 6.3
Hz), 3.75 (2 H, m), 4.12 (2 H, m). 13C NMR (125 MHz,
CDCl3): d = 18.5, 25.9, 32.2, 51.9, 53.4, 54.2, 118.7, 193.0.
Anal. Calcd (%) for C9H14N2S2: C, 50.43; H, 6.58; N, 13.07.
Found: C, 50.80; N, 12.92; H, 6.62.
(1) (a) Chakraborti, A. K.; Shivani, G. R. J. Org. Chem. 2006,
71, 5785. (b) Tucker, J. L. Org. Process Res. Dev. 2006, 10,
315. (c) Sikchi, S. A.; Hultin, P. G. J. Org. Chem. 2006, 71,
5888.
(2) (a) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025.
(b) Shibahara, F.; Nozaki, K.; Hiyama, T. J. Am. Chem. Soc.
2003, 125, 8555.
(3) (a) Caldas, E. D.; Hosana Conceicüa, M.; Miranda, M. C. C.;
Souza, L.; Lima, J. F. J. Agric. Food Chem. 2001, 49, 4521.
(b) Erian, A. W.; Sherif, S. M. Tetrahedron 1999, 55, 7957.
(c) Wood, T. F.; Gardner, J. H. J. Am. Chem. Soc. 1941, 63,
2741. (d) Beji, M.; Sbihi, H.; Baklouti, A.; Cambon, A. J.
Fluorine Chem. 1999, 99, 17.
Table 1, Entry 3: 1H NMR (500 MHz, CDCl3): d = 1.72–
1.92 (4 H, m), 2.66 (2 H, t, J = 6.5 Hz), 3.29 (2 H, t, J = 6.5
Hz), 3.43 (2 H, t, J = 6.7 Hz), 3.64 (2 H, t, J = 6.7 Hz).
13C NMR (125 MHz, CDCl3): d = 18.6, 24.5, 26.2, 31.6,
51.1, 53.9, 55.5, 118.7, 190.0. Anal. Calcd for C8H12N2S2: C,
47.97; H, 6.04; N, 13.98. Found: C, 48.30; H, 5.82, N, 13.69.
Table 1, Entry 7: 1H NMR (500 MHz, CDCl3): d = 2.82 (2
H, t, J = 6.2 Hz), 3.46 (2 H, t, J = 6.3 Hz), 4.88 (2 H, s),
7.26–7.39 (5 H, m), 8.02 (1 H, br s, NH). 13C NMR (125
MHz, CDCl3): d = 18.9, 31.4, 51.5, 119.0, 128.3, 128.8,
129.7, 136.5, 196.0.
Synlett 2007, No. 18, 2797–2800 © Thieme Stuttgart · New York