J. Am. Chem. Soc. 2001, 123, 755-756
755
Scheme 1
Modular Peptide-Based Phosphine Ligands in
Asymmetric Catalysis: Efficient and Enantioselective
Cu-Catalyzed Conjugate Additions to Five-, Six-, and
Seven-Membered Cyclic Enones
Sylvia J. Degrado, Hirotake Mizutani, and Amir H. Hoveyda*
Department of Chemistry, Merkert Chemistry Center
Boston College, Chestnut Hill, Massachusetts 02467
ReceiVed October 17, 2000
Table 1. Cu-Catalyzed Enantioselective Addition of Dialkylzinc
Peptide-based catalysts offer attractive and practical options
in the development of asymmetric transformations. Peptides are
easily prepared, consist of readily available chiral building blocks
and are modular. Largely due to these attractive attributes, metal-
peptide complexes have recently been demonstrated to initiate
asymmetric C-C bond forming reactions.1 Research in these
laboratories, involving peptide-based phenolic Schiff bases as
chiral ligands (e.g., 1, Scheme 1), has led to the development of
Ti-catalyzed additions of TMSCN to meso epoxides2 and imines
(Strecker amino acid synthesis),3 and Zr-catalyzed addition of
dialkylzincs to imines.4 The effectiveness of peptidic ligands in
the aforementioned programs led us to investigate their utility in
promoting catalytic enantioselective olefin alkylations with alkyl-
metals.5
Reagents to Cyclopentenonesa
Herein, we report the results of our studies on catalytic
enantioselective conjugate addition of dialkylzinc reagents to
cyclic enones.6,7 These transformations are promoted by (CuOTf)2‚
C6H6 in conjunction with peptide-based chiral phosphine ligands
(2, Scheme 1).8 The method described allows for efficient,
catalytic, and highly enantioselective (>95% ee) functionalization
of not only six- and seven-membered ring enones, but also of
cyclopentenones. It is worth noting that the catalytic asymmetric
conjugate addition of alkylmetals to five-membered ring enones
has previously been shown to be significantly less efficient and
selective than reactions of the larger ring analogues.7
a Conditions: indicated mol % 2 and (CuOTf)2‚C6H6, 3 equiv of
dialkylzinc, toluene, -30 °C (-20 °C for entries 4 and 7). b Conversion
determined by GLC. c Isolated yields after silica gel chromatography.
d Enantioselectivities determined by chiral GLC (R-DEX for entries
1-2; CDGTA for entries 3, 5-8). e GLC yields (volatile products);
representative isolated yields: 52% 4a and 46% 7a. f ee determined
by GLC analysis of the acetal derived from (R,R)-dimethylethylene
diol (CDGTA).
(1) (a) Mori, A.; Nitta, H.; Kudo, M.; Inoue, S. Tetrahedron Lett. 1991,
32, 4333-4336. (b) Abe, H.; Nitta, H.; Mori, A.; Inoue, S. Chem. Lett. 1992,
2443-2446. (c) Nitta, H.; Yu, D.; Kudo, M.; Mori, A.; Inoue, S. J. Am. Chem.
Soc. 1992, 114, 7969-7975. (d) Mori, A.; Abe, H.; Inoue, S. Appl. Organomet.
Chem. 1995, 9, 189-197. For representative reports, where peptides serve as
chiral catalysts (without a metal salt), see: (e) Jarvo, E. R.; Copeland, G. T.;
Papaioannou, N.; Bonitatebus, P. J.; Miller, S. J. J. Am. Chem. Soc. 1999,
121, 11638-11643. (f) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew.
Chem., Int. Ed., Engl. 2000, 39, 1279-1281.
(2) (a) Cole, B. M.; Shimizu, K. D.; Krueger, C. A.; Harrity, J. P.; Snapper,
M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1668-1671.
(b) Shimizu, K. D.; Cole, B. M.; Krueger, C. A.; Kuntz, K. W.; Snapper, M.
L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1997, 36, 1704-1707.
(3) (a) Krueger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Wirschun, W. G.;
Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 1999,
121, 4284-4285. (b) Porter, J. R.; Wirschun, W. G.; Kuntz, K. W.; Snapper,
M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 2657-2658.
(4) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am.
Chem. Soc. 2001, 123, in press.
To initiate our studies, we examined the potential utility of
chiral peptidic ligands represented by 1 (Scheme 1). Under a
variety of conditions, however, conjugate additions deliver
racemic products. Treatment of cyclopentenone (3) with 10
mol % 1, a variety of Cu salts,9 and 3 equiv of Et2Zn (toluene,
-30 °C) leads to the formation of the expected ketone product
in >98% conv but in <5% ee. Similar results were obtained with
cyclohexenone and cycloheptenone.
At this point we reasoned that, whereas the phenol Schiff base
may be suitable for association with early transition metals (e.g.,
Ti or Zr), the corresponding P-containing chiral ligand 2 should
provide a “softer” site of binding and may be more appropriate
for late transition metals (e.g., Cu or Zn). Accordingly, we
prepared 2 from commercially available 2-(diphenylphosphino)-
benzaldehyde and performed screening of conditions to establish
the optimum Cu salt and solvent. As illustrated in entry 1 of
Table 1, treatment of cyclopentenone 3 with 1.0 mol % (CuOTf)2‚
C6H6,10 2.4 mol % 211 and 3 equiv of Et2Zn leads to 90% conv12
(5) Hoveyda, A. H.; Heron, N. M. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; p
431-454.
(6) Gomez-Bengoa, E.; Heron, N. M.; Didiuk, M. T.; Luchaco, C. A.;
Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 7649-7650.
(7) (a) Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos, R.; de Vries, A.
H. M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2620-2623. (b) Strangeland,
E. L.; Sammakia, T. Tetrahedron 1997, 53, 16503-16510. (c) Naasz, R.;
Arnold, L. A.; Pineschi, M.; Keller, E.; Feringa, B. L. J. Am. Chem. Soc.
1999, 121, 1104-1105. (d) Alexakis, A.; Benhaim, C.; Fournioux, X.; van
den Heuvel, A.; Leveque, J.-M.; March, S.; Rosset, S. Synlett 1999, 1811-
1813. (e) Hu, X.; Chen, H.; Zhang, X. Angew. Chem., Int. Ed. 1999, 38, 3518-
3521. (f) Yamanoi, Y.; Imamoto, T. J. Am. Chem. Soc. 1999, 64, 2988-
2989. (g) Escher, I. H.; Pfaltz, A. Tetrahedron 2000, 56, 2879-2888. (h)
Chataigner, I.; Gennari, C.; Piarulli, U.; Ceccarelli, S. Angew. Chem., Int.
Ed., Engl. 2000, 39, 916-918.
(9) The following Cu salts were examined: CuCN, CuCl, CuBr‚Me2S, CuI,
CuOAc, Cu(OTf)2, and (CuOTf)2‚C6H6. Solvents screened were THF, Et2O,
toluene, CH2Cl2, and ClCH2CH2Cl. Among various possible combinations,
Cu(OTf)‚C6H6 in toluene proved to be the most efficient combination.
(10) (a) Salomon, R. G.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95, 1889-
1897. (b) Salomon, R. G.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95, 3300-
3310.
(11) Approximately 20% excess ligand (vs CuOTf) is used to avoid
competing background reactions.
(12) Complete conversion and identical enantioselection is observed at
higher catalyst loading. For example, with 2.8 mol % (CuOTf)2‚C6H6 and 7.0
mol % 2, >98% conv is achieved in 6 h.
(8) For a recent report in connection with a peptide-based phosphine ligand
(Pd-catalyzed allylic substitution), see: Gilbertson, S. R.; Collibee, S. E.;
Agarkov, A. J. Am. Chem. Soc. 2000, 122, 6522-6523.
10.1021/ja003698p CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/04/2001