OAc
O
OAc
O
Notes and references
i
ii
iii
† Crystal data for 13: C18H28O5, M = 324.42, orthorhombic, a =
13 or 14
13.690(4), b = 25.900(3), c = 5.179(3) Å, V = 1836(1) Å3, T = 293 °C,
P2,2,2 (#19), Z = 4, m(Mo-Ka) = 0.84 cm21, 2487 reflections measured,
2487 unique (Rint = 0.000) which were used in all calculations. The final
wR(F2) was 0.057 [for 1140 observed reflections with I > 2.00s(I)]. CCDC
graphic files in .cif format.
n-Hex
n-Hex
O
O
H
H
OAc
OAc
Br
15
16
OR
O
O
OH
O
‡ Selected data for 1: dH(300 MHz, CDCl3) 4.68 (dd, J 1, 2, 1H), 4.49 (q-
like, J 4.8, 1H), 4.11 (ddd, J 2.2, 4.6, 12.1, 1H), 3.72 (q, J 6.4, 1H), 2.60
(ddd, J 4.74, 5.58, 17.00, 1H), 2.30 (m, 1H), 2.20 (m, 1H), 2.00 (m, 2H),
1.60 (m, 3H), 1.40–1.25 (m, 8H), 0.88 (t, J 6.80, 3H); dC(75 MHz, CDCl3)
198.3, 171.4, 114.6, 77.0, 73.0, 66.7, 57.7, 34.0, 33.2, 31.8, 31.1, 29.3, 29.2,
25.4, 22.7, 14.1; m/z 298 (M+, 1.3%), 281 (32.9), 262 (20.1), 242 (7.1), 209
(6.6), 191 (8.3), 166 (29.0), 165 (100), 155 (26.0), 139 (25.2), 109 (14.2)
[C16H24O4 (M 2 H2O) requires 280.1675 found 280.1683]. For 19 [a]D20
+127.4 (c 0.58, CHCl3); dH(300 MHz, CDCI3) 5.80 (m, 1H), 5.64 (t, J 4.90,
1H), 5.06 (td, J 3.82, 6.60, 1H), 4.14 (ddd, J 2.2, 3.7, 12.8, 1H), 2.63 (m,
1H), 2.39 (m, 1H), 2.20 (m, 1H), 2.13 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 1.99
(m, 1H), 1.75 (m, 1H), 1.65 (m, 2H), 1.25–1.30 (m, 9H), 0.87 (t, J 6.9, 3H);
dC(75 MHz, CDCl3) 194.8, 170.5, 169.8, 168.5(2), 112.2, 74.3, 73.0, 66.6,
59.7, 32.9, 31.7, 30.0, 29.3, 29.1, 26.5, 25.2, 22.6, 21.2, 20.9, 20.8, 14.1; m/z
380 (M+ 244, 11.3%), 365 (17.7), 322 (14.7), 321 (25.0), 305 (67.4), 279
(7.9), 262 (14.4), 245 (44.4) 233 (14.0), 191 (15.8), 165 (15.3), 149 (17), 43
(100) (C22H32O8: calc. C, 62.24; H, 7.60. Found: C, 61.93; H, 7.74%).
iv
i
triacetate
n-Hex
n-Hex
19 (90%)
O
H
H
OAc
OH
OH
OH
17 R = H (51%)
18 R = Ac (21%)
1
Scheme 4 Reagents and conditions: i, Ac2O, Et3N, DMAP, rt, 2 h, 95%; ii,
NBS, AlBN, CCl4, reflux, 2 h, 69%; iii, NaI, dioxane, CaCO3, H2O, reflux,
48 h, 72%; iv, MeOH, Na2CO3, H2O, rt, 1 h, 91%.
of 13 came from (+)-tartaric acid the absolute configuration of
13 can be assigned as 7R,9S,10S. Both of 13 and 14 treated with
Ac2O gave 15. Attempts to introduce a hydroxy group at C4 via
allylic oxidation of 15 with reagents like SeO2, SeO2·SiO2,
Hg(OAc)2, Pb(OAc)4 and AcOBut failed.
Allylic bromination of 15 with NBS gave 16 in fairly good
yield. Nucleophilic substitution of 16 via the method described
by Wu 8 produced a mixture of 4b-hydroxy compounds 17 and
18, both of which upon hydrolysis gave (+)-koninginin D 1 as
a white powder, mp 140–142 °C (hot plate); [a]2D0 171 (c 0.125,
CHCl3) [ref. mp 122–123 °C, [a]D +166.9 (c 0.3, CHCl3)]
(Scheme 4). The H1 NMR, C13 NMR and mass spectra of 1 and
its triacetate 19 were identical with those of natural (+)-koningi-
nin D and its triacetate, respectively.‡ The overall yield of
(+)-koninginin D from tartaric acid was 4.1% (15 steps).
1 R. W. Dunlop, A. Simon, K. Sivasihamparam and E. L. Ghisalberti,
J. Nat. Prod., 1989, 52, 67.
2 E. L. Ghisalberti, C. Y. Rowland, J. Nat. Prod., 1993, 56, 1799; S. R.
Parker, H. G. Cutler and P. R. Schreiner, Biosci. Biotechnol. Biochem.,
1995, 59, 1747.
3 K, Mori and K. Abe, Polish J. Chem., 1994, 68, 2255 ; K, Mori and K,
Abe, Liebigs Ann., 1995, 943.
4 X. X. Xu and Y. H. Zhu, Tetahedron Lett., 1995, 36, 9173.
5 E. Hungerbuhler and D. Seebuch Helv. Chim. Acta, 1981, 64, 687.
6 S. H. Kang and S. B.Lee Chem. Commu., 1998, 761.
7 K. Fuchs and L. A.Paquette, J. Org. Chem., 1994, 59, 528.
8 R. B. Zhao and Y. L. Wu, Acta Chim. Sinica, 1989, 87.
Communication 9/01320B
1130
Chem. Commun., 1999, 1129–1130