S. Cosgun et al. / Journal of Fluorine Chemistry 107 (2001) 375±386
385
acidified with 1N aqueous HCl to pH 1. The aqueous
phase is extracted with ethyl acetate (2 Â 100 ml). The
organic phase is dried over magnesium sulfate and the
solvent is evaporated under reduced pressure; the crude
residue is purified by flash chromatography (AcOEt/
hexane 1:1) and recristallized from hexane/ether or from
chloroform.
The products 1B-n [RF-b alanyl-histidine RF-carno-
sine]: 1B-5 [3-per¯uoropentyl-b-alanyl-histidine] and 1B-
7 [3-per¯uoroheptyl-b-alanyl-histidine] are white solids.
4.2.5.2. Potentiometry. The protonation and coordination
equilibria have been investigated by potentiometric
titrations in aqueous solution at a constant ionic strength
of 0.1 mol/l (NaClO4) and T 298 Æ 1 K under argon
atmosphere by using an automatic titration apparatus
including a Dosimat 665 autoburette (Metrohm), an Orion
710A precision digital pH-meter and an Orion 9103SC
combined glass electrode. pK-values have been calculated
from 4 independent titrations (ca. 100 data points each) by
means of the PSEQUAD software [34].
4.2.5.3. UV±VIS spectrophotometry. The UV±VIS
absorption spectra have been recorded on a Varian Cary
3E UV±VIS spectrophotometer. The ligand-to-metal ratio
varied from 0 to 2.
1B-5 RF5-carnosine [C5F11CH(NH2)CH2C(O)NHCH-
CO2HCH2-Im; MM 494:26]; Rf (AcOEt/hexane 70/30)
0.48; mpꢁꢂC 182; Yield: 75%. 1B-7 RF7-carnosine
[C7F15CH(NH2)CH2C(O)NHCHCO2HCH2-Im;
MM 594:28]; Rf (AcOEt/hexane 70/30) 0.45; mpꢁꢂC
197; Yield: 73%.
Acknowledgements
We wish to thank Eliane Eppiger for her valuable tech-
nical assistance with the NMR measurements, as well as
Dr. A. Lantz and Dr. P. Durual (Atochem Society) for
supplying us with the ¯uorinated material. We are grateful
Spectroscopic characteristics: IR n[COOH]: 3450±
1
1
 Â
to Dr. M.-J. Stebe for many useful discussions.
3120 cm
;
n[N±H]: 3290±3215 cm
;
n[CO acide]:
1711 cm 1; n[CO amide]: 1690.
NMR (CD3OD) [1H] a: d 7:80 ppm, (s, 1H); b:
d 8:10 ppm, (s, 1H); c: d 2:80 ppm, (m, 2H); d: d
3:45 ppm, (m, 1H); e: d 2:50 ppm, (m, 2H); f and i:
d 5:10 ppm, (m, 2H); g: d 10:25 ppm, (m, 1H); h:
d 6:3 ppm, (m, 2H). [19F] a: d 82:39 ppm (t, 3F),
3J 10:0 Hz); b: d 127:70 ppm at 122.90 ppm (m); g:
References
[1] I. Ojima, J.R. Mc Carthy, J.T. Welch (Eds.), Biomedical Frontiers of
Fluorine Chemistry, ACS books, American Chemical Society,
Washington, DC, 1996.
[2] J.T. Welch, S. Eswarakchinan (Eds.), Fluorine in Bioorganic
Chemistry, Wiley, New York, 1991.
Á
d 119:50 ppm (m, 2F a 4F); d: d 112:00 ppm (m,
2F). Mass (scan EI) for 1B5 molecular peak 494 and for 1B7
molecular peak 594.
[3] V.P. Kukhar, V.A. Soloshonok (Eds.), Fluorine-containing Aminoa-
cids: Synthesis and Properties, Wiley, New York, 1995.
È
[4] J.G. Riess, Colloõd Surf., A: Physicochem. Eng. Aspects 84 (1994)
Microanalyses for 1B5 [3-per¯uoropentyl-b-alanyl-histi-
dine] Calcd. for C14H13F11N4O3 (M 494:26): C% 34.02,
H% 2.65, N% 11.34, F% 42.28; Found C% 33.89, H% 2.75,
N% 10.94, F% 42.05; for 1B7 [3-per¯uoroheptyl-b-alanyl-
histidine] Calcd. for C16H13F15N4O3(M 594:28): C%
32.34, H% 2.20, N% 9.43, F% 47.95; Found C% 32.97,
H% 2.58, N% 10.05, F% 48.14.
33.
[5] J.G. Riess, New J. Chem. 19 (1995) 891.
[6] J.A. Imlay, S. Linn, Sciences 240 (1988) 1302.
[7] A.D. Bollands, K.C. Lowe, Biotechnol. Lett. 11/4 (1989) 265.
[8] A.A. Boldyrev, Int. J. Biochem. 25 (8) (1993) 1101.
[9] C.E. Brown, J. Theoret. Biol. 88 (1981) 245.
[10] F. Hamdoune, C. Selve, L. Mansuy, M. Allouch, J. Chem. Res. (S)
(1992) 22 and (M) 401.
[11] R. Koher, Y. Yamamoto, K.C. Cundy, B.N. Ames, Proc. Natl. Acad.
Sci. U.S.A. 85 (1988) 3175.
4.2.5. Physico-chemical properties
[12] C.J. Parker Jr., Anal. Biochem. 108 (1980) 303.
[13] J.M. Arnould, C. Tankosic, Arch. Int. Physiol. Biochem. 88 (1980)
293.
4.2.5.1. Surface activities. The surface tension mea-
surements were made either with a Dognon±Abribat or
a KruÈss K10T tensiometer using the Wilhelmy-plate
method.
[14] J.M. Arnould, R. Frentz, Comp. Biochem. Physiol. 50C (1975) 59.
[15] W. Gulewitsch, S. Amiradzibi, Hoppe-Segler's, Z. Physiol. Chem. 30
(1900) 565.
Aqueous solutions of the per¯uoroalkyl-oligopeptide
3AAn and of the derivative RF5-carnosine Ð HCl (1B5-
HCl) have been prepared starting from stock solutions of
known concentrations by successive dilutions with distilled
water. Their surface tension g has been measured at 258C
after complete equilibration of the system. Each value is a
mean of three successive measurements. The estimated error
of the surface tension measurements is of Æ1 mN/m.
[16] K. Nagel, T. Yamane, Heterocycles 10 (1976) 277.
È
[17] M.S. Ozer, S. Thiebaut, C. Gerardin-Charbonnier, C. Selve, Synth.
Â
Â
Commun. 28/13 (1998) 2429.
Â
[18] V. Emmanouil, M. El Ghoul, C. Andre-Barres, B. Guidetti, I. Rico-
Lattes, A. Lattes, Langmuir 14 (1998) 5389.
Â
[19] D. Papadopoulos, S. Auberger, C. Gerardin, J. Amos, M. Maugras,
 Â
M.J. Stebe, C. Selve, New J. Chem. 23 (1999) 657.
Â
[20] S. Achilefu, L. Mansuy, C. Selve, S. Thiebaut, J. Fluorine Chem. 70
(1995) 19.