S. M. Agawane, J. M. Nagarkar / Tetrahedron Letters 52 (2011) 3499–3504
3503
Table 5
CeO2 catalyzed synthesis of
a
-hydroxyphosphonatea
Sr. no.
Aldehyde
Amine
Product
Time (min)
20
Yieldb (%)
CHO
OH
P(OEt)2
H
N
3q
99
C2H5
C2H5
O
a
Reaction condition: benzaldehyde (1 mmol), diethylamine (1 mmol), triethyl phosphite (1 mmol) and 5 mol % CeO2 under solvent-free ultrasonication.
Isolated yield.
b
3. (a) Laschat, S.; Kunz, H. Synthesis 1992, 1/2, 90–95; (b) Yadav, J. S.; Reddy, B. V.
S.; Raj, S.; Reddy, K. B.; Prasad, A. R. Synthesis 2001, 15, 2277–2280; (c) Ha, H. J.;
Nam, G. S. Synth. Commun. 1992, 22, 1143–1148.
Table 6
Recyclability of nano CeO2
a
Run
Fresh
99
Run 1
98
Run 2
98
Run 3
97.5
4. Yokomatsu, T.; Yoshida, Y.; Shibuya, S. J. Org. Chem. 1994, 59, 7930–7933.
5. (a) Heydari, A.; Hamadi, H.; Pourayoubi, M. Catal. Commun. 2007, 8, 1224–
1226; (b) Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2007, 72, 1263–1270; (c)
Heydari, A.; Arefi, A. Catal. Commun. 2007, 8, 1023–1026; (d) Bhattacharya, A.
K.; Kaur, T. Synlett 2007, 745–748; (e) Manabe, K.; Kobayashi, S. Chem. Commun.
2000, 8, 669–670; (f) Qian, C.; Huang, T. J. Org. Chem. 1998, 63, 4125–4128; (g)
Ranu, B. C.; Hajra, A.; Jana, J. Org. Lett. 1999, 1, 1141–1143; (h) Xu, F.; Luo, Y.;
Deng, M.; Shen, Q. Eur. J. Org. Chem. 2003, 24, 4728–4730; (i) Firouzabadi, H.;
Iranpoor, N.; Sobhani, S. Synthesis 2004, 16, 2692–2696; (j) Azizi, N.; Saidi, M. R.
Eur. J. Org. Chem. 2003, 23, 4630–4633; (k) Heydari, A.; Karimian, A.; Ipaktschi,
J. Tetrahedron Lett. 1998, 39, 6729–6732; (l) Chandrasekhar, S.; Prakash, S. J.;
Jagadeshwar, V.; Narsihmulu, C. Tetrahedron Lett. 2001, 42, 5561–5563; (m)
Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42, 8211–8213; (n) Akiyama, T.;
Sanada, M.; Fuchibe, K. Synlett 2003, 1463–1464; (o) Yadav, J. S.; Reddy, B. V. S.;
Madan, C. Synlett 2001, 1131–1133; (p) Gallardo-Macias, R.; Nakayama, K.
Synthesis 2010, 1, 57–62; (q) Kudrimoti, S.; Bommena, R. V. Tetrahedron Lett.
2005, 46, 1209–1210.
Yieldb (%)
a
Reaction condition: benzaldehyde (1 mmol), aniline (1 mmol), triethyl phos-
phite (1 mmol) and 5 mol % recycled CeO2 under ultrasonication for 5 min.
b
Isolated yield.
The aromatic amine and benzaldehyde form imine, and is the
key intermediate in the product-forming pathway.5p This proves
that the formation of a-aminophosphonate can be achieved by cat-
alytic quantity of CeO2 avoiding the use of Lewis acid reagents like
AlCl3, ZrCl4, InCl3, metal triflates, etc. The reaction conditions are
mild and no undesired product formation is seen.
The catalyst was removed from the reaction mixture by centri-
fugation, washed with dichloromethane and dried. Table 6 indi-
cates the reusability of the catalyst. It clearly reveals that the
catalyst can be used for three cycles without much loss in the yield
of desired product.
6. Ko, S.; Yao, C. F. Tetrahedron Lett. 2006, 47, 8827–8829.
7. (a) Tajbakhsh, A.; Heydari, A.; Alinezhad, H.; Ghanei, M.; Khaksarb, S. Synthesis
2008, 3, 352–354; (b) Kabachnik, M. M.; Minaeva, L. I.; Beletskaya, I. P. Synthesis
2009, 14, 2357–2360; (c) Odinets, I. L.; Artyushin, O. I.; Shevchenko, N.;
Petrovskii, P. V.; Nenajdenko, V. G.; Roschenthaler, G. V. Synthesis 2009, 4, 577–
582.
8. Sobhani, S.; Vafaee, A. Synthesis 2009, 11, 1909–1915.
In conclusion, we report the ‘Green Methodology’ for the syn-
9. Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2008, 73, 6029–6032.
10. (a) Chen, Q.; Yuan, C. Synthesis 2007, 24, 3779–3786; (b) Chen, Q.; Li, J.; Yuan, C.
Synthesis 2008, 18, 2986–2990.
thesis of
ultrasound and solvent-free condition. Secondary amine did not re-
act with benzaldehyde instead gives -hydroxyphosphonate. The
reaction is applicable to aromatic/heteroaromatic aldehydes and
amines. Short reaction time achieved by ultrasonication is the
added advantage of this reaction. The present study can be consid-
a-aminophosphonates using ceria nanoparticles, under
11. (a) Thathagar, M. B.; Beckers, J.; Rothenberg, G. J. Am. Chem. Soc. 2002, 124,
11858–11859; (b) Reetz, M. T.; Westermann, E. Angew. Chem., Int. Ed. 2000, 39,
165–168; (c) Zhao, M.; Crooks, R. M. Angew. Chem., Int. Ed. 1999, 38, 364–366;
(d) Thathagar, M. B.; Beckers, J.; Rothenberg, G. Green Chem. 2004, 6, 215–218.
12. (a) Juarez, R.; Concepcion, P.; Corma, A.; Garcia, H. Chem. Commun. 2010, 46,
4181–4183; (b) Bhanage, B. M.; Fujita, S.; Ikushima, Y.; Arai, M. Appl. Catal., A
2001, 219, 259–266; (c) Juarez, R.; Corma, A.; Garcia, H. Green Chem. 2009, 11,
949–952.
a
ered as the green protocol for synthesis of a-aminophosphonates,
having advantages like solvent-free condition, high yields of de-
sired products, recyclability of the catalyst, good selectivity and
hence environmentally benign methodology.
13. Terribile, D.; Trovarelli, A.; Llorca, J.; Leitenburg, C.; Dolcetti, G. J. Catal. 1998,
178, 299–308.
14. (a) Gregg, S. J.; Rauquerol, J.; Sing, K. S. W. Adsorption at a gas–solid and liquid–
solid interface; Elsevier: Amsterdam, 1982. pp 153-164; (b) Brunauer, S.;
Deming, L. S.; Deming, W. S.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723–1732.
15. Trovarelli, A. In Catalysis by Ceria and Related Materials; Imperial College Press,
2002; 2, p 409. catalytic science series.
Acknowledgment
16. (a) Akbari, J.; Heydari, A. Tetrahedron Lett. 2009, 50, 4236–4238; (b) Karimi-
Jaberi, Z.; Amiri, M. Heteroat. Chem. 2010, 21, 96–98.
17. Mitragotri, S. D.; Pore, D. M.; Desai, U. V.; Wadgaonkar, P. P. Catal. Commun.
2008, 9, 1822–1826.
The authors are thankful to UGC-Green Technology Centre, New
Delhi, India for awarding the fellowship.
18. General procedure for synthesis of nano ceria: CeO2 nanoparticles were prepared
by adding ammonia solution to an aqueous solution of cerium(III) nitrate in
presence of CTAB. In a typical procedure, added 1 g of Ce(NO3)3 in solution of
CTAB dissolved in 100 cm3 of water. Mole ratio of Ce/CTAB was kept at unity.
pH of the solution was adjusted between 10 and 11 by adding 25% ammonia
solution under vigorous stirring for 2–3 h. The resulting mixture was
ultrasonicated for 10 min and then filtered off. The obtained precipitate was
washed with water and subsequently with acetone and dried at 120 °C for
12 h. It was then calcined at 500 °C for 3 h. The prepared CeO2 was
characterized with various techniques such as X-ray diffractograms (XRD),
Fourier Transform Infra-Red Spectroscopy (FT-IR), Transmission Electron
Microscope (TEM), Field Emission Gun-Scanning Electron Microscopes (FEG–
SEM) coupled with EDAX and X-ray photoelectron spectroscopy (XPS). See
Supplementary data.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Sheridan, R. P. J. Chem. Inf. Comput. Sci. 2002, 42, 103–108.
2. (a) Sikosrki, J. A.; Miller, M. J.; Braccolino, D. S.; Cleary, D. G.; Corey, S. D.; Ream,
J. E.; Schnur, D.; Shah, A.; Walker, M. C. Phosphorus, Sulfur Silicon Relat. Elem.
1993, 76, 375–378; (b) Stowasser, B.; Budt, K.-H.; Jian-Qi, L.; Peyman, A.;
Ruppert, D. Tetrahedron Lett. 1992, 33, 6625–6628; (c) Atherton, F. R.; Hassall, C.
H.; Lambert, R. W. J. Med. Chem. 1986, 29, 29–40; (d) Peyman, A.; Budt, K.-H.;
Paning, J. S.; Stowasser, B.; Ruppert, D. Tetrahedron Lett. 1992, 33, 4549–4552;
(e) Meyer, J. H.; Barlett, P. A. J. Am. Chem. Soc. 1998, 120, 4600–4609; (f) Maier,
L. Phosphorus, Sulfur Silicon Relat. Elem. 1990, 53, 43–67; (g) Maier, L.; Spoerri, H.
Phosphorus, Sulfur Silicon Relat. Elem. 1991, 61, 69–75; (h) Emsley, J.; Hall, D.
Chemistry of Phosphorus; Harper & Row: London, 1976. pp 494; (i) Maier, L.; Lea,
P. J. Phosphorus, Sulfur Silicon Relat. Elem. 1983, 17, 1–19; (j) Giannousis, P. P.;
Bartlett, P. A. J. Med. Chem. 1987, 30, 1603–1609.
19. General procedure for synthesis of a-aminophosphonates: In
a 10 ml round
bottom flask taken a mixture of aldehyde (1 mmol) and amine (1 mmol) at
room temperature and then triethyl phosphite (1 mmol) was added. Further
5 mol %, 8.525 mg CeO2 is added to the reaction mixture. Then reaction
mixture was subjected to the ultrasonication for appropriate time. After
completion of the reaction, as indicated by TLC, catalyst was separated by
centrifugation and subsequent washing with dichloromethane. The reaction
mixture diluted with water and product was extracted with dichoromethane