AB2-Based Monodendrons and Supramolecular Dendrimers
J. Am. Chem. Soc., Vol. 123, No. 7, 2001 1303
dendrimers (i.e., first-generation dendrimers) with cylindrical
supramolecular minidendrimers were reported. The structural
analysis required for the design of these building blocks involves
the identification of the bulk phase in which the supramolecular
dendrimers are self-organized by a combination of differential
scanning calorimetry (DSC) and thermal optical polarized
microscopy (TOPM) followed by the selection of the lattice
symmetry by X-ray diffraction experiments (XRD) performed
on single crystal or single crystal liquid crystal specimens.3-5
The decision on the shape of the supramolecular dendrimer that
generates the lattice is made by a combination of electron density
calculations, transmission electron microscopy (TEM), and
electron diffraction experiments.3 Various modes of self-
assembly of the monodendritic building blocks into supramo-
lecular objects of different shapes are screened and eliminated
during this process. Finally, the retrostructural analysis of the
lattices generated from supramolecular dendrimers of known
shapes by using the lattice dimensions and density data provides
access to the shape, size, and number of monodendritic building
blocks that create the supramolecular dendrimer.
To date we have investigated a library containing from three
to five generations of self-assembling 3,4,5-trisubstituted benzyl
ether monodendrons containing four different minidendritic
architectural motifs on their periphery3a,7 and five generations
of a 3,5-disubstituted benzyl ether monodendron.8 Structural
analysis of these monodendrons allowed the discovery of
building blocks displaying the following shapes: tapered, twin-
tapered, half-disk, disklike, conical, half-sphere, and spherical.
These experiments have confirmed and quantified7a,8 the predic-
tion that the shape of a monodendron or dendrimer should
change by increasing the generation number9 both in solution
and in bulk. In addition, they demonstrated that the shape of
the monodendrons and dendrimers is determined both by the
structure of the repeat unit attached to their periphery7,10 and
by the core multiplicity.11,12 Most recently we have discovered
that the solid angle of a monodendron determines the depen-
dence between the size and shape of a supramolecular dendrimer
and its generation number.7c,13 Simultaneously we have learned
that the first-generation AB3 minimonodendron functionalized
with a suitable group in its core self-assembles in cylindrical
objects that at high temperatures13 undergo a reversible shape
change to spherical objects. However, both the Im3hm lattice4
and the hexagonal columnar superlattice6 were obtained so far
only with the first-generation supramolecular dendrimers (i.e.,
minidendrimers).
This diversity of tertiary and quaternary structural control
accomplished by the modification of the primary structure of
monodendrons is extremely rewarding since it produced libraries
of quasi-equiValent11 building blocks that have been used to
generate new concepts in organic and polymerization reactions
in restricted geometries14 and also opened strategies for the
synthesis of single-molecule functional nanosystems.15 Never-
theless, the transplant of the discoveries made with minimono-
dendrons4,6,13 to larger generations of monodendrons is most
efficiently pursued at this time by investigating libraries of self-
assembling monodendrons.
Toward this goal we are reporting here the synthesis and the
structural analysis of three to four generations from the two
constitutional isomeric libraries of AB2 3,4- and, respectively,
3,5-disubstituted benzyl ether self-assembling monodendrons
containing four minimonodendrons with different architectural
motifs on their periphery. This series of experiments will provide
access to the discovery of novel architectural and structural
concepts and will clarify some of the structural limitations of
these classes of self-assembling monodendrons.
Results and Discussion
Synthesis of Constitutional Isomeric Libraries of AB2
Monodendrons. Two constitutional isomeric libraries of AB2
monodendrons based on 3,4- and 3,5-disubstituted benzyl ether
repeat units functionalized on their periphery with 3,4,5-tris(n-
dodecan-1-yloxy)benzyl ether, 3,4-bis(n-dodecan-1-yloxy)benzyl
ether, 3,4,5-tris[p-(n-dodecan-1-yloxy)benzyloxy]benzyl ether,
and 3,4-bis[p-(n-dodecan-1-yloxy)benzyloxy]benzyl ether first-
generation monodendrons (minidendrons) were synthesized. The
short nomenclature used for these monodendrons is identical
to that employed in previous publications for AB3 3,4,5-
trisubstituted benzyl ether monodendrons.3a,7,15a Scheme 1
outlines their synthesis and reports the yields of the pure
compounds and their theoretical molecular masses. On the top
of this scheme are shown the structures of (3,4,5-3,4)12G2-X
(X ) CO2CH3), (A-X),15a (3,4,5-3,5)12G2-X (X ) CO2CH3),
(B-X),15a (3,4)212G2-X (X ) CO2CH3), (C-X),15a (4-3,4,5)-
12G1-X (X ) CO2CH3,16 CH2OH7a), (D-X), and (4-3,4)-
12G1-X (X ) CO2CH3,15a CH2OH7c), (E-X) that were reported
previously from our laboratory. The second line from Scheme
1 shows the convergent synthesis1b of 3,4-disubstituted series
of monodendrons together with reaction conditions and yields.
The synthetic method used involves the quantitative reduction
(3) (a) Balagurusamy, V. S. K.; Ungar, G.; Percec, V.; Johansson, G. J.
Am. Chem. Soc. 1997, 119, 1539. (b) Hudson, S. D.; Jung, H.-T.; Percec,
V.; Cho, W.-D.; Johansson, G.; Ungar, G.; Balagurusamy, V. S. K. Science
1997, 278, 449.
(4) Yeardley, D. J. P.; Ungar, G.; Percec, V.; Holerca, M. N.; Johansson,
G. J. Am. Chem. Soc. 2000, 122, 1684.
(5) (a) Percec, V.; Johansson, G.; Heck, J.; Ungar, G.; Batty, S. V. J.
Chem. Soc., Perkin Trans. 1 1993, 1411. (b) Percec, V.; Heck, J. A.;
Tomazos, D.; Ungar, G. J. Chem. Soc., Perkin Trans. 2 1993, 2381. (c)
Percec, V.; Heck, J.; Tomazos, D.; Falkenberg, F.; Blackwell, H.; Ungar,
G. J. Chem. Soc., Perkin Trans. 1 1993, 2799. (d) Percec, V.; Tomazos,
D.; Heck, J.; Blackwell, H.; Ungar, G. J. Chem. Soc., Perkin Trans. 2 1994,
31. (e) Johansson, G.; Percec, V.; Ungar, G.; Abramic, D. J. Chem. Soc.,
Perkin Trans. 1 1994, 447. (f) Tomazos, D.; Out, G.; Heck, J. A.; Johansson,
G.; Percec, V.; Mo¨ller, M. Liq. Cryst. 1994, 16, 509. (g) Percec, V.;
Johansson, G.; Ungar, G.; Zhou, J. J. Am. Chem. Soc. 1996, 118, 9855.
(6) Percec, V.; Ahn, C.-H.; Bera, T. K.; Ungar, G.; Yeardley, D. J. P.
Chem. Eur. J. 1999, 5, 1070.
(7) (a) Percec, V.; Cho, W.-D.; Mosier, P. E.; Ungar, G.; Yeardley, D.
J. P. J. Am. Chem. Soc. 1998, 120, 11061. (b) Percec, V.; Cho, W.-D.;
Mo¨ller, M.; Prokhorova, S. A.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem.
Soc. 2000, 122, 4249. (c) Percec, V.; Cho, W.-D.; Ungar, G. J. Am. Chem.
Soc. 2000, 122, 10273.
(8) Percec, V.; Cho, W.-D.; Ungar, G.; Yeardley, D. J. P. Angew. Chem.
2000, 112, 1661.; Angew. Chem., Int. Ed. 2000, 39, 1597.
(9) Naylor, A. M.; Goddard, W. A., III; Kiefer, G. E.; Tomalia, D. A. J.
Am. Chem. Soc. 1989, 111, 2339.
(10) Percec, V.; Chu, P.; Ungar, G.; Zhou, J. J. Am. Chem. Soc. 1995,
117, 11441.
(11) Percec, V.; Ahn, C.-H.; Ungar, G.; Yeardley, D. J. P.; Mo¨ller, M.;
Sheiko, S. S. Nature 1998, 391, 161.
(12) Yin, R.; Zhu, Y.; Tomalia, D. A.; Ibuki, H. J. Am. Chem. Soc. 1998,
120, 2678.
(13) Ungar, G.; Percec, V.; Holerca, M. N.; Johansson, G.; Heck. J. Chem.
Eur. J. 2000, 6, 1258.
(14) Percec, V.; Ahn, C.-H.; Barboiu, B. J. Am. Chem. Soc. 1997, 111,
12978.
(15) (a) Percec, V.; Ahn, C.-H.; Cho, W.-D.; Jamieson, A. M.; Kim, J.;
Leman, T.; Schmidt, M.; Gerle, M.; Mo¨ller, M.; Prokhorova, S. A.; Sheiko,
S. S.; Cheng, S. Z. D.; Zhang, A.; Ungar, G.; Yeardley, D. J. P. J. Am.
Chem. Soc. 1998, 120, 8619. (b) Percec, V.; Schlueter, D.; Ungar, G.; Cheng,
S. Z. D.; Zhang, A. Macromolecules 1998, 31, 1745. (c) Prokhorova, S.
A.; Sheiko, S. S.; Mo¨ller, M.; Ahn, C.-H.; Percec, V. Macromol. Rapid
Commun. 1998, 19, 359. (d) Prokhorova, S. A.; Sheiko, S. S.; Ahn, C.-H.;
Percec, V.; Mo¨ller, M. Macromolecules 1999, 32, 2653. (e) Prokhorova,
S. A.; Sheiko, S. S.; Mourran, A.; Azumi, R.; Beginn, U.; Zipp, G.; Ahn,
C.-H.; Holerca, M. N.; Percec, V.; Mo¨ller, M. Langmuir 2000, 16, 6862.
(f) Percec, V.; Holerca, M. N. Biomacromolecules 2000, 1, 6.
(16) (a) Maltheˆte, J.; Tinh, N. H.; Levelut, A. M. J. Chem. Soc., Chem.
Commun. 1986, 1548. (b) Maltheˆte, J.; Collet, A.; Levelut, A. M. Liq. Cryst.
1989, 5, 123.