J. Am. Chem. Soc. 2001, 123, 1509-1510
1509
creation of porous hybrids with well-ordered mesostructures.10
The control of the pore structure is certainly of great importance
in the preparation of catalytic materials. However, for potential
applications such as electronic, optic, advanced catalysis the
control of the structure at macroscopic and nanoscopic level is
also important. Efforts have been made to control the macroscopic
morphology of silicas using surfactant-mediated fabrication;
interesting helical silica structures were produced using chiral
gelators as templates.11 Regarding porous hybrids, a surfactant-
mediated approach was only recently used to generate a cubic
crystal with decaoctahedral shape.12
New Hybrid Organic-Inorganic Solids with Helical
Morphology via H-Bond Mediated Sol-Gel
Hydrolysis of Silyl Derivatives of Chiral (R,R)- or
(S,S)-Diureidocyclohexane
Joe¨l J. E. Moreau,* Luc Vellutini, Michel Wong Chi Man, and
Catherine Bied
Laboratoire de Chimie Organome´tallique, UMR CNRS 5076
Ecole Nationale Supe´rieure de Chimie de Montpellier
34296 Montpellier Cedex 05, France
In all of the above cases, the structure of the material was
controlled by the addition of an external organic template which
directs the organization of the inorganic phase. Silsesquioxane
hybrids offer much larger potentialities and seem very interesting
because, owing to the covalent bond between the organic and
the inorganic fragments, the auto-assembly of the organic
substructure can control the formation of the inorganic silicate
components and eventually direct the structure at the meso- or
macroscopic level. A judicious choice of the organic substructure
in the precursor may lead to auto-organized solids upon simple
hydrolysis. We wanted to test the use of intermolecular H-bond
interactions between precursor molecules during the solid forma-
tion, as a mean to control the three-dimensional structure of the
hybrid network.
Our current interest in the design of chiral hybrids containing
(R,R)- or (S,S)-diamino-cyclohexane units and of new enantiose-
lective catalytic materials13 has led us to study the use of chiral
organic substructures capable of auto-association. Here we report
the creation of a hybrid with helical morphology via H-bond-
mediated hydrolysis of a single precursor. A left- or right-handed
helix is auto-generated, according to the configuration of the
organic substructure.
Diureido derivatives, which are low-molecular weight gelators,
were chosen because of their ability to auto-associate through
H-bonds.14 Compound (R,R)-2, [R]D +4.3 (c ) 3, CHCl3), was
obtained from trans-(1R,2R)-diaminocyclohexane (R,R)-1 upon
reaction with γ-isocyanatopropyl-triethoxysilane as shown in
Scheme 1. Despite the absence of a long hydrocarbon chain
substituent14 in compound 2, it easily auto-associates by H-bonds
in solution and was found to form organogel upon dissolution in
organic solvents such as cyclohexane or mesitylene, at ∼3-5
ReceiVed NoVember 1, 2000
Hybrid materials1 have attracted the attention of chemists and
material scientists due to commercial interest in their applications
as well as scientific interest in the challenges posed by their
synthesis. Even though major strides have been made in the past
decade, the goal of the synthesis of materials and the tailoring of
their properties by design from molecules remains largely elusive.
In this context, silsesquioxane hybrids,2-4 with well-defined
composition and resulting from the sol-gel hydrolysis condensa-
tion of functionalized organic molecules, constitute an interesting
class of materials for study. The combination of organic and
inorganic substructures offers unique possibilities for designing
new synthetic routes. However, the tailoring of these materials
is complicated by the fact that they are metastable products made
under kinetic rather than thermodynamic control, and many factors
influence the structure of the synthetic materials. The morphology
of the solid varies according to the nature of the organic molecules
and according to the experimental conditions of the synthesis.3a,4a-6
Also, weak intermolecular interactions have been shown to
influence the kinetic parameters, to modify the texture and to
generate anisotropy in the resulting hybrid materials.5b,7 Clear
examples of templating and structure-directing have also been
demonstrated. The use of the silicas templating agents: molecular
assemblies,8 organogelators,9 has been recently extended to the
(1) (a) Sanchez, C.; Ribot, F. New J. Chem. 1994, 18, 989-1007. (b) Laine,
R. M.; Sanchez, C.; Brinker, C. J.; Giannelis, E., Eds. Organic/Inorganic
Hybrid Materials, MRS Symp. Vol. 519, 1998. (c) Klein, L.; DeGuire, M.;
Lorraine, F.; Mark, J. Eds. Organic/Inorganic Hybrid Materials II, MRS Symp.
Vol. 576, 1999. (d) Laine, R. M.; Sanchez, C.; Brinker, C. J., Eds. Organic/
Inorganic Hybrid Materials III; Materials Research Society symposium
proceedings; Materials Research Society: Warrendale, PA, 2000, Vol. 628.
(2) (a) Voronkov, M. G.; Lavrent’yev, V. I. Top. Curr. Chem. 1982, 102,
199-236. (b) Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Chem. ReV.
1995, 95, 1409-1430.
(3) (a) Shea, K. J.; Loy, D. A.; Webster, O. W. J. Am. Chem. Soc. 1992,
114, 4, 6700-6710. (b) Loy, D. A.; Shea, K. J. Chem. ReV. 1995, 95, 1431-
1442 and references therein.
(4) (a) Corriu, R. J. P.; Moreau, J. J. E.; The´pot, P.; Wong Chi Man, M.
Chem. Mater. 1992, 4,1217-1224. (b) Corriu R. J. P.; Moreau J. J. E.; The´pot
P.; Wong Chi Man M. Chem. Mater. 1996, 8, 100-106. (c) Corriu, R. J. P.;
Leclercq, D. Angew. Chem., Int. Ed. Engl. 1996, 35, 1420-1436 and references
therein.
(5) (a) Loy, D. A.; Jamison, G. M.; Baugher, B. M.; Myers, S. A.; Assink,
R. A.; Shea, K. J. Chem. Mater. 1996, 8, 656-663. (b) Myers, S. A.; Assink,
R. A.; Loy, D.A.; Shea, K. J. J. Chem. Soc., Perkin Trans. 2 2000, 545-549.
(6) (a) Cerveau G.; Corriu, R. J. P.; Lepeytre, C.; Mutin, P. H. J. Mater.
Chem. 1998, 8, 2707-2713. (b) Cerveau G.; Corriu, R. J. P.; Framery, E. J.
Chem. Soc., Chem. Commun. 1999, 2081-2082.
(7) (a) Corriu, R. J. P.; Moreau, J. J. E.; The´pot, P.; Wong Chi Man, M. J.
Mater. Chem. 1994, 4,987-988. (b) Corriu, R. J. P.; Moreau, J. J. E.; Chorro,
C.; Le`re-Porte, J.-P.; Sauvagol, J.-L.; The´pot P.; Wong Chi Man, M.; Chem.
Mater. 1994, 6, 640-649. (c) Boury, B.; Corriu, R. J. P.: Le Strat, V.; Delord,
P.; Nobili, M. Angew. Chem., Int. Ed. 1999, 38, 3172-3175. (d) Corriu, R.
J. P. Angew. Chem., Int. Ed. 2000, 39, 1376-1398.
(8) (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartulli, J.C.; Beck,
J. S. Nature 1992, 359, 710-712. (b) Beck, J. S.; Vartulli, J. C.; Roth, W. J.;
Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D., Chu, C. T-W.; Olson, D.
H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am.
Chem. Soc. 1992, 114, 10834-10843. (c) Qisheng Huo; Margolese, D. I.;
Ciesla, U.; Pingyun Feng; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.;
Schu¨th, F.; Stucky, G. D. Nature 1994, 368, 317-321. (d) Mercier, L.;
Pinnavaia, T. J. AdV. Mater. 1997, 9, 500-503.
(9) Clavier, G. M.; Pozzo, J. L.; Bouas-laurent, H.; Liere, C.; Roux, C.;
Sanchez, C. J. Mater. Chem. 2000, 10, 1725-1730.
(10) (a) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J.
Am. Chem. Soc. 1999, 121, 9611-9614. (b) Melde, B. J.; Holland, B. T.;
Blanford, C. F.; Stein, A. Chem. Mater. 1999, 11, 3302-3308. (c) Asefa, T.;
MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867-871.
(d) Yoshina-Ishii, C.; Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G.
A. Chem. Commun. 1999, 2539-2540. (e) MacLachlan, M. J.; Asefa, T.;
Ozin, G. A. Chem. Eur. J. 2000, 2507-2511 (f) Asefa, T.; Yoshina-Ishii, C.;
MacLachlan, M. J.; Ozin, G. A. J. Mater. Chem. 2000, 10, 1751-1755.
(11) (a) Ono, Y.; Nakashima, K.; Sano, M.; Hojo, J.; Shinkai, S. Chem.
Lett. 1999, 1119-1120. (b) Jong Hwa Jung; Ono, Y.; Shinkai, S. Angew.
Chem., Int. Ed. 2000, 39, 1862-1865. (c) Jong Hwa Jung; Ono, Y.; Hanabusa,
K.; Shinkai, S. J. Am. Chem. Soc. 2000, 122, 5008-5009 and references
therein.
(12) Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc.
2000, 122, 5660-5661.
(13) (a) Adima, A.; Moreau, J. J. E.; Wong Chi Man, M. J. Mater. Chem.
1997, 7, 2331-2333. (b) Moreau, J. J. E.; Wong Chi Man, M. Coord. Chem.
ReV. 1998, 178-180, 1073-1084 and references therein. (c) Adima, A.;
Moreau, J. J. E.; Wong Chi Man, M. Chirality 2000, 12, 411-420. (d)
Hesemann, P.; Moreau, J. J. E. Tetrahedron: Asymmetry 2000, 11, 2183-
2194.
(14) (a) Van Esch, J.; Schoonbeek, F.; De Loos, M.; Kooijman, H.; Spek,
A. L.; Kellogg, R. M.; Feringa, B. L. Chem. Eur. J. 1999, 5, 937-980. (b)
Schoonbeek, F.; Van Esch, J.; Wegewijs, B.; Rep, D. B. A.; De Haas, M. P.;
Klapwijk, T. M.; Kellogg, R. M.; Feringa, B. L. Angew. Chem., Int. Ed. 1999,
38, 1393-1397. (c) Van Esch, J.; De Feyter, S.; Kellogg, R. M.; De Schryver,
F.; Feringa, B. L. Chem. Eur. J. 1997, 3, 1238-1243. (d) Jadzyn, J.;
Stockhauser, M.; Zywucki, B. J. Phys. Chem. 1987, 91, 754-757.
10.1021/ja003843z CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/26/2001