Organic Letters
Accession Codes
Letter
(c) Chen, L.; Wu, L.; Duan, W.; Wang, T.; Li, L.; Zhang, K.; Zhu, J.;
Peng, Z.; Xiong, F. Photoredox-Catalyzed Cascade Radical Cycliza-
tion of Ester Arylpropiolates with CF3SO2Cl To Construct 3-
Trifluoromethyl Coumarin Derivatives. J. Org. Chem. 2018, 83, 8607−
8614. (d) Hou, J.; Ee, A.; Feng, W.; Xu, J.-H.; Zhao, Y.; Wu, J. Visible-
Light-Driven Alkyne Hydro-/Carbocarboxylation Using CO2 via
Iridium/Cobalt Dual Catalysis for Divergent Heterocycle Synthesis.
J. Am. Chem. Soc. 2018, 140, 5257−5263.
CCDC 1960689 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, U.K.; fax: +44 1223 336033.
(8) (a) Ferrer, J. L.; Austin, M. B.; Stewart, C.; Noel, J. P. Structure
and function of enzymes involved in the biosynthesis of phenyl-
propanoids. Plant Physiol. Biochem. 2008, 46, 356−370. (b) Yao, R.;
Zhao, Y.; Liu, T.; Huang, C.; Xu, S.; Sui, Z.; Luo, J.; Kong, L.
Identification and functional characterization of a p-coumaroyl CoA
2′-hydroxylase involved in the biosynthesis of coumarin skeleton from
Peucedanum praeruptorum Dunn. Plant Mol. Biol. 2017, 95, 199−213.
(9) (a) Horaguchi, T.; Hosokawa, N.; Tanemura, K.; Suzuki, T.
Photocyclization Reactions. Part 8. Synthesis of 2-Quinolone,
Quinoline and Coumarin Derivatives Using Trans−Cis isomerization
by Photoreaction. J. Heterocycl. Chem. 2002, 39, 61−67. (b) Boeck, F.;
Blazejak, M.; Anneser, M. R.; Hintermann, L. Cyclization of ortho-
hydroxycinnamates to coumarin under mild conditions: A nucleo-
philic organocatalysis approach. Beilstein J. Org. Chem. 2012, 8, 1630−
1636. (c) Zhan, K.; Li, Y. Visible-Light Photocatalytic E to Z
Isomerization of Activated Olefins and Its Application for the
Synthesis of Coumarins. Catalysts 2017, 7, 337−345.
(10) (a) Singh, K.; Staig, S. J.; Weaver, J. D. Facile Synthesis of Z-
Alkenes via Uphill Catalysis. J. Am. Chem. Soc. 2014, 136, 5275.
(b) Metternich, J. B.; Gilmour, R. Photocatalytic E → Z Isomerization
of Alkenes. Synlett 2016, 27, 2541−2552. (c) Molloy, J. J.; Morack,
T.; Gilmour, R. Positional and Geometrical Isomerisation of Alkenes:
The Pinnacle of Atom Economy. Angew. Chem., Int. Ed. 2019, 58,
13654−13664.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We acknowledge financial support from the WWU Mu
and the CiM-IMPRS Graduate School (fellowship to T.N.).
■
̈
nster
REFERENCES
■
(1) (a) Tasior, M.; Kim, D.; Singha, S.; Krzeszewski, M.; Ahn, K. H.;
Gryko, D. T. π-Expanded coumarins: synthesis, optical properties and
application. J. Mater. Chem. C 2015, 3, 1421−1446. (b) Pereira, T.
M.; Franco, D. P.; Vitorio, F. E.; Kummerle, A. Coumarin
Compounds in Medicinal Chemistry: Some Important Examples
from the Last Years. Curr. Top. Med. Chem. 2018, 18, 124−148.
(c) Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin,
W. Coumarin-Based Small-Molecule Fluorescent Chemosensors.
Chem. Rev. 2019, 119, 10403−10519.
(11) Metternich, J. B.; Gilmour, R. A “One Photocatalyst, n Activation
Modes” Strategy for Cascade Catalysis: Emulating Coumarin Biosyn-
thesis with (−)-Riboflavin. J. Am. Chem. Soc. 2016, 138, 1040−1045.
(12) Morack, T.; Metternich, J. B.; Gilmour, R. Vitamin Catalysis:
Direct, Photocatalytic Synthesis of Benzocoumarins via (−)-Ribo-
flavin-Mediated Electron Transfer. Org. Lett. 2018, 20, 1316−1319.
(13) (a) Trost, B. M. The atom economy: a search for synthetic
efficiency. Science 1991, 254, 1471−1477. (b) James, M. J.; Schwarz, J.
L.; Strieth-Kalthoff, F.; Wibbeling, B.; Glorius, F. Dearomative
Cascade Photocatalysis: Divergent Synthesis through Catalyst
Selective Energy Transfer. J. Am. Chem. Soc. 2018, 140, 8624−8628.
(2) Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents:
A review on synthetic strategies, mechanism of action and SAR
studies. Eur. J. Med. Chem. 2015, 101, 476−495.
(3) Pechmann, H. v. Neue Bildungsweise der Cumarine. Synthese
des Daphnetins. I. Ber. Dtsch. Chem. Ges. 1884, 17, 929−936.
(4) For selected examples, see: (a) Trost, B. M.; Toste, F. D.;
Greenman, K. Atom economy: Palladium-catalyzed formation of
coumarins by addition of phenols and alkynoates via a net C-H
insertion. J. Am. Chem. Soc. 2003, 125, 4518−4526. (b) Ferguson, J.;
Zeng, F.; Alper, H. Synthesis of Coumarins via Pd-Catalyzed
Oxidative Cyclocarbonylation of 2-Vinylphenols. Org. Lett. 2012,
14, 5602−5605. (c) Sasano, K.; Takaya, J.; Iwasawa, N. Palladium-
(II)-Catalyzed Direct Carboxylation of Alkenyl C-H Bonds with CO2.
J. Am. Chem. Soc. 2013, 135, 10954−10957. (d) Gadakh, S. K.; Dey,
S.; Sudalai, A. Rh-Catalyzed Synthesis of Coumarin Derivatives from
Phenolic Acetates and Acrylates via C-H Bond Activation. J. Org.
Chem. 2015, 80, 11544−11550.
̈
(14) (a) Poplata, S.; Troster, A.; Zou, Y.-Q.; Bach, T. Recent
Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2]
Photocycloaddition Reactions. Chem. Rev. 2016, 116, 9748−9815.
(b) Guo, H.; Herdtweck, E.; Bach, T. Enantioselective Lewis Acid
Catalysis in Intramolecular [2 + 2] Photocycloaddition Reactions of
Coumarins. Angew. Chem., Int. Ed. 2010, 49, 7782−7785. (c) Shepard,
M. S.; Carreira, E. M. Enantioselective Allene/Enone Photo-
cycloadditions: The Use of an Inexpensive Optically Active 1,3-
Disubstituted Allene. Tetrahedron 1997, 53, 16253−16276.
(5) Song, C. E.; Jung, D.-U.; Choung, S. Y.; Roh, E. J.; Lee, S.-G.
The employment of hydrophobic ionic liquids dramatically enhanced
the activity of metal triflates in Friedel-Crafts alkenylations of
aromatic compounds with various alkyl- and aryl-substituted alkynes.
Angew. Chem., Int. Ed. 2004, 43, 6183−6185.
(6) Ranu, B. C.; Jana, R. Ionic Liquid as Catalyst and Reaction
Medium - A Simple, Efficient and Green Procedure for Knoevenagel
Condensation of Aliphatic and Aromatic Carbonyl Compounds Using
a Task-Specific Basic Ionic Liquid. Eur. J. Org. Chem. 2006, 2006,
3767−3770.
(7) For selected examples, see: (a) Mi, X.; Wang, C.; Huang, M.;
Wu, Y.; Wu, Y. Preparation of 3-Acyl-4-arylcoumarins via Metal-Free
Tandem Oxidative Acylation/Cyclization between Alkynoates with
Aldehydes. J. Org. Chem. 2015, 80, 148−155. (b) Kawaai, K.;
Yamaguchi, T.; Yamaguchi, E.; Endo, S.; Tada, N.; Ikari, A.; Itoh, A.
Photoinduced Generation of Acyl Radicals from Simple Aldehydes,
Access to 3-Acyl-4-arylcoumarin Derivatives, and Evaluation of Their
Antiandrogenic Activities. J. Org. Chem. 2018, 83, 1988−1996.
(15) Nicolaou, K.; Chen, J. The art of total synthesis through
cascade reactions. Chem. Soc. Rev. 2009, 38, 2993−3009.
(16) Metternich, J. B.; Mudd, R. J.; Gilmour, R. Flavins in
Photochemistry. In Science of Synthesis: Photocatalysis in Organic
Synthesis; Thieme: Stuttgart, Germany, 2019; pp 391−404.
(17) (a) Metternich, J. B.; Gilmour, R. A Bio-Inspired, Catalytic E→
Z Isomerization of Activated Olefins. J. Am. Chem. Soc. 2015, 137,
11254−11257. (b) Metternich, J. B.; Artiukhin, D. G.; Holland, M.
C.; von Bremen-Kuhne, M.; Neugebauer, J.; Gilmour, R. Photo-
̈
catalytic E→Z Isomerization of Polarized Alkenes Inspired by the
Visual Cycle: Mechanistic Dichotomy and Origin of Selectivity. J. Org.
Chem. 2017, 82, 9955−9977.
(18) Montalti, M.; Michl, J.; Balzani, V. Handbook of Photochemistry;
CRC Press: Boca Raton, FL, 2006.
(19) (a) Stephenson, C.; Yoon, T.; MacMillan, D. W. C.; Zeitler, K.
Metal-Free Photo(redox) Catalysis. In Visible Light Photocatalysis in
Organic Chemistry; Stephenson, C., Yoon, T., MacMillan, D. W. C.,
D
Org. Lett. XXXX, XXX, XXX−XXX