COMMUNICATIONS
d) A. E. Shilov, G. P. Shulꢁpin, Chem. Rev. 1997, 97, 2879; e) B. A.
Arndtsen, R. G. Bergman, T. A. Mobley, T. H. Peterson, Acc. Chem.
Res. 1995, 504, 154; f) Selective Hydrocarbon Activation. Principles
and Progress (Eds.: J. A. Davies, P. L. Watson, J. F. Liebman, A.
Greenberg), VCH, Weinheim, 1990. g) Activation and Functionaliza-
tion of Alkanes (Ed.: C. L. Hill), Wiley, New York, 1989.
Np hydrogen atoms not localized but considered at calculated
positions. Final agreement factors R(F) 0.040, wR(F 2) 0.089 for
observed reflections. Largest peak and hole in the final difference
3
map: 0.70 and
0.70 e
.
b) Crystallographic data (excluding
structure factors) for the structures reported in this paper have been
deposited with the Cambridge Crystallographic Data Centre as
supplementary publication nos. CCDC-148676 (2), CCDC-148678
(3), CCDC-148677 (6), and CCDC-148679 (7). Copies of the data can
be obtained free of charge on application to CCDC, 12 Union Road,
Cambridge CB21EZ, UK (fax: (44)1223-336-033; e-mail: deposit@
ccdc.cam.ac.uk). c) Structural data for 5: C. Meier, PhD thesis,
Technische Universität München (Germany), 1991.
[2] For typical examples see: a) J. P. Collman, L. S. Hegedus, J. R. Norton,
R. G. Finke, Principles and Applications of Organotransition Metal
Chemistry, University Science Books, Mill Valley, CA, 1987; b) P.
Hofmann, C. Meier, W. Hiller, M. Heckel, J. Riede, M. U. Schmidt, J.
Organomet. Chem. 1995, 490, 51, and references therein; c) G. P.
Rosini, F. Liu, K. Krogh-Jespersen, A. S. Goldman, C. Li, S. P. Nolan,
J. Am. Chem. Soc. 1998, 120, 9256.
[3] a) J. A. Osborn, F. H. Jardine, J. F. Young, G. J. Wilkinson, Chem. Soc.
Inorg. Phys. Theor. 1966, 1711; b) J. Halpern, T. Okamoto, A.
Zakhariev, J. Mol. Catal. 1976, 2, 65.
[4] For some examples see: a) T. Sakakura, T. Sodeyama, K. Sasaki, K.
Wada, M. Tanaka, J. Am. Chem. Soc. 1990, 112, 7221; b) P. C. Ford,
T. L. Netzel, C. T. Spillett, D. B. Pourreau, Pure Appl. Chem. 1990, 62,
1091; c) J. A. Maguire, W. T. Boese, M. E. Goldman, A. S. Goldman,
Coord. Chem. Rev. 1990, 97, 179; d) A. Vigalok, Y. Ben-David, D.
Milstein, Organometallics 1996, 15, 1839.
[13] D. W. Meek, T. J. Mazanec, Acc. Chem. Res. 1981, 14, 266.
[14] In all tetracoordinate complexes 3 ± 6 the methyl proton resonance
signals of the neopentyl ligand appear as a singlet. This, in line with
1H{31P} NMR data, excludes 5J coupling of P1 with C3-H atoms
through covalent bonds and establishes direct Rh-H-C contacts trans
to P1 for 2.
[15] M. Brookhart, M. L. H. Green, J. Organomet. Chem. 1983, 250, 395.
[16] R. Voigt, M. R. Meneghetti, H. Urtel, F. Rominger, P. Hofmann,
unpublished results. In contrast to the Pt system, the decomposition of
2 in solution above 08C does not yield isobutene.
[5] a) H. Werner, M. Schäfer, O. Nürnberg, J. Wolf, Chem. Ber. 1994, 127,
27; b) M. Schäfer, N. Mahr, J. Wolf, H. Werner, Angew. Chem. 1993,
105, 1377; Angew. Chem. Int. Ed. Engl. 1993, 32, 1315; c) R. T. Price,
R. A. Anderson, E. L. Muetterties, J. Organomet. Chem. 1984, 367,
407; d) M. D. Fryzuk, D. H. McConville, S. J. Rettig, J. Organomet.
Chem. 1993, 445, 245.
[17] S. P. Ermer, G. E. Struck, S. P. Bitler, R. Richards, R. Bau, T. C. Flood,
Organometallics 1993, 12, 2634, and references therein.
[18] The computed T-Y-T in-plane inversion barrier for the model 2a is
1
31.6 kcalmol
with
a
Y-shaped transition state (NIMAG 1;
574.2 icm 1).[19]
[19] B3PW91; Stuttgart ± Dresden basis sets with effective core potentials
for Rh and P, 6-31G** basis sets for C and H; for details see
Supporting Information. We thank Dr. E. Clot for technical assistance.
[20] a) D. L. Thorn, T. H. Tulip, J. A. Ibers, J. Chem. Soc. Dalton Trans.
1979, 2022; b) P. R. Hoffmann, T. Yoshida, T. Okano, S. Otsuka, J. A.
Ibers, Inorg. Chem. 1976, 15, 2462; c) A. Vigalok, Y. Ben-David, D.
Milstein, Organometallics 1996, 15, 1839; d) D. W. Lee, W. C. Kaska,
C. M. Jensen, Organometallics 1998, 17, 1.
[6] P. Hofmann, C. Meier, U. Englert, M. U. Schmidt, Chem. Ber. 1992,
125, 353, and references therein.
[7] a) H. L. M. Van Gaal, F. L. A. Van Den Bekerom, J. Organomet.
Chem. 1977, 134, 237; b) T. Yoshida, T. Okano, S. Otsuka, J. Chem.
Soc. Chem. Commun. 1978, 855; c) T. Yoshida, T. Okano, D. L. Thorn,
T. H. Tulip, S. Otsuka, J. A. Ibers, J. Organomet. Chem. 1979, 181, 183;
d) H. Werner, A. Höhn, M. Dziallas, Angew. Chem. 1986, 98, 1112;
Angew. Chem. Int. Ed. Engl. 1986, 25, 1090; e) J. Wolf, L. Brandt, A.
Fries, H. Werner, Angew. Chem. 1990, 102, 584; Angew. Chem. Int. Ed.
Engl. 1990, 29, 510; f) D. Schneider, H. Werner, Angew. Chem. 1991,
103, 710; Angew. Chem. Int. Ed. Engl. 1991, 30, 700; g) S. Bresadola, B.
Longato, Inorg. Chem. 1974, 13, 539.
[8] a) S. Alvarez, Coord. Chem. Rev. 1999, 193 ± 195, 13; b) Y. W. Yared,
S. L. Miles, R. Bau, C. A. Reed, J. Am. Chem. Soc. 1977, 99, 7076;
c) R. S. Hay-Motherwell, G. Wilkinson, T. K. N. Sweet, M. B. Hurst-
house, Polyhedron 1996, 15, 3163; d) P. H. M. Budzelaar, N. N. P.
Moonen, R. de Gleder, J. M. M. Smith, Eur. J. Inorg. Chem. 2000, 753.
[9] a) H. H. Karsch, Z. Naturforsch. B 1983, 38, 1027; b) H. Heiss, P.
Hofmann (BASF AG), DE-A 4134772A, 1992.
YBa2Cu3O6d as an Oxygen Separation
Membrane**
Chu-sheng Chen,* Shen Ran, Wei Liu, Ping-hua Yang,
Ding-kun Peng, and Henny J. M. Bouwmeester
[10] S. D. Ittel, L. K. Johnson, M. Brookhart, Chem. Rev. 2000, 100, 1169,
and references therein.
High-Tc superconducting oxides exhibit fast oxygen trans-
fer across the interface between gas and solid phase and
diffusion in the bulk at elevated temperatures.[1, 2] This is of
crucial importance to the fine-tuning of the superconductivity
by intercalating oxygen into the oxides to oxidize the copper
ions. The fast oxygen transport kinetics may also be used to
develop oxygen-semipermeable dense membranes, which
have potential applications in oxygen production and oxy-
[11] NMR data of
2 (for the data in [D8]toluene see Supporting
Information): 31P{1H} NMR (121 MHz, [D8]THF, 308C): d 54.2
(dd, 1J(P,Rh) 280.0, 2J(P,P) 22.1 Hz;
P cis to Np); 21.6 (dd,
1J(P,Rh) 99.3, 2J(P,P) 22.1 Hz;
P
trans to Np); 1H NMR
(500 MHz, [D8]THF,
308C): d 3.00 (t, 2J(H,P) 7.3 Hz, 2H;
PCH2P), 1.42 (d, 3J(H,P) 12.7 Hz, 18H; tBu cis to Np), 1.37 (d,
3J(H,P) 11.5 Hz, 18H; tBu trans to Np), 0.83 (d, 2J(H,P) 2.2 Hz,
9H; CH2C(CH3)3,
13C satellites: 1J(H,C) 121 Hz), 0.40 (dm,
3J(H,P) 5.3 Hz, 2H; RhCH2); 13C{1H} NMR (75 MHz, [D8]THF,
258C): d 43.9 (t, J 3.4 Hz; CMe3 from Np), 38.8 (d, J 10.6 Hz;
PCH2P), 36.9 (m, J 5.3 Hz; PCMe3 cis to Np), 35.0 (dd, J 5.9 Hz,
J 3.0 Hz; PCMe3 trans to Np), 31.6 (m; PC(CH3)3), 28.7 (t, J
4.9 Hz; (CH3)3, Np), 20.0 (m; RhC).
[*] Prof. C.-s. Chen, S. Ran, Dr. W. Liu, P.-h. Yang, Prof. D.-k. Peng
Laboratory of Internal Friction and Defects in Solids
Department of Materials Science and Engineering
University of Science and Technology of China
Hefei, Anhui 230026 (P.R. China)
[12] a) Single crystals were obtained by slowly concentrating a solution of 2
in Et2O at 158C by solvent evaporation. Crystal dimensions 0.37 Â
0.20 Â 0.10 mm3, monoclinic, space group P21/n, Z 4, a 9.4062(1),
b 19.1825(1), c 14.2169(2) , b 92.462(1)8, V 2562.85(5) 3,
1calcd 1.240 gcm 1, 2qmax 55.08, l(MoKa) 0.71073 , 0.38 w scans,
T 200 K, 26061 reflections collected, 5883 unique, 4379 observed
with I > 2s(I). Corrections for absorption were applied (program
SADABS), m 0.795 mm 1, Tmin 0.75, Tmax 0.94. The structure was
solved by Patterson methods and refined by full-matrix least-squares
methods on F 2 (program SHELXTL (5.10)), 271 parameters refined.
Fax : (86)551-3631760
Dr. H. J. M. Bouwmeester
Department of Chemical Technology, University of Twente
P.O. Box 217, 7500 AE Enschede (The Netherlands)
[**] This work was supported by the National Natural Science Foundation
of China and the National Advanced Materials Committee of China.
784
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4004-0784 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 4