Our study has shown that 2-imino-3-thiazolylcoumarins react with N-nucleophiles under acid catalysis
conditions to give N-substituted 3-thiazolyl-2-iminocoumarins.
EXPERIMENTAL
The electronic absorption spectra were taken on a Hitachi U-3210 spectrophotometer. The IR spectra
1
were taken for KBr pellets on a Specord IR-75 spectrometer at from 400 to 4000 cm-1. The H NMR spectra
were taken on a Bruker 300 spectrometer at 300 MHz in DMSO-d6 with TMS as the internal standard. The
purity of all the compounds was checked by thin-layer chromatography on 200×200-mm Silufol plates using 1:2
ethyl acetate–toluene as the eluent.
The physicochemical and spectral indices of 6 and 7 are given in Tables 1 and 2.
N-Substituted 2-Imino-3-[4-(4-R2-phenyl)-2-thiazolyl)]coumarins 6a-u (General Method). A
sample of 2-iminocoumarin (3 mmol) was dissolved in DMF (10 ml) and amino compound (4.5-6.0 mmol) and
10% H2SO4 (3-5 drops) in methanol were added. The mixture was heated at reflux for 15-20 min. After cooling,
the solution was diluted with a 10-fold volume of methanol. The precipitate was filtered off and recrystallized
from a suitable solvent (toluene or acetonitrile).
N-Substituted 3-Benzothiazolyl-2-iminocoumarins 7a and 7b (General Method). A sample of
2-iminocoumarin (3 mmol) was dissolved in a minimal amount of hot butanol and substituted aniline
(4.5-6 mmol) along with 2-3 drops 10% H2SO4 in methanol was added. The mixture was heated at reflux for
30-90 min. After cooling, the precipitate formed was filtered off and recrystallized from a suitable solvent
(butanol or acetonitrile).
REFERENCES
1.
2.
C. N. O'Callaghan, T. B. H. McMurry, and J. E. O'Brien, J. Chem. Soc., Perkin Trans. 2, 425 (1998).
A. A. Karasev, L. L. Lukatskaya, M. I. Rubtsov, E. K. Zhikol, S. N. Yarmolenko, and O. A. Ponomarev,
Zh. Obshch. Khim., 65, 1547 (1995).
3.
4.
Ya. V. Belokon', S. N. Kovalenko, A. V. Silin, and V. M. Nikitchenko, Khim. Geterotsikl. Soedin., 1345
(1997).
M. M. Asimov, V. M. Nikitchenko, A. I. Novikov, A. N. Rubinov, Z. Bor, and L. Gaty, Chem. Phys.
Lett., 149, 140 (1988).
C. Vamvakaris, M. Patsch, and W. Mach, US Patent No. 4404389; Chem. Abstr., 92, 41931 (1980).
T. R. Burke, B. Lim, V. E. Marquez, Z.-H. Li, J. B. Bolen, I. Stefanova, and I. D. Horak, J. Med. Chem.,
36, 425 (1993).
5.
6.
7.
8.
9.
10.
11.
V. A. Zubkov, S. N. Kovalenko, V. P. Chernykh, and S. M. Ivkov, Khim. Geterotsikl. Soedin., 760 (1994).
M. A. Kirpichenok, S. K. Gorozhankin, and I. I. Grandberg, Khim. Geterotsikl. Soedin., 751 (1988).
N. B. Desai, US Patent No. 4299959; Chem. Abstr., 88, 75311 (1978).
F. Tiemann, Ber., 19, 1661 (1886).
K. Sato, Y. Nagamori, and M. Okazaki, Nippon Kagaku Kaishi, 492 (1976); Chem. Abstr., 92, 180942
(1980).
12.
13.
14.
S. N. Kovalenko, K. M. Sytnik, V. M. Nikitchenko, S. V. Rusanova, V. P. Chernykh, and
A. O. Porokhnyak, Khim. Geterotsikl. Soedin., 190 (1999).
Y. V. Bilokin, M. V. Vasylyev, O. V. Branytska, S. M. Kovalenko, and V. P. Chernykh, Tetrahedron,
55, 13757 (1999).
A. O. Doroshenko, E. A. Posokhov, Ya. V. Belokon', S. N. Kovalenko, V. V. Ivanov, and
O. A. Ponomarev, Khim. Geterotsikl. Soedin., 1356 (1997).
1396