2694 J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 17
Letters
(10) Simpson, M. M.; Ballestros, J . A.; Ciappa, V.; Chen, J .; Suehiro,
M.; Hartman, D. S.; Godel, T.; Snyder, L. A.; Sakmar, T. P.;
J avitch, J . A. Dopamine D4/D2 receptor selectivity is determined
by a divergent aromatic microdomain contained within the
second, third, and seventh membrane spanning segments. Mol.
Pharmacol. 1999, 56, 1116-1126.
hydrogen bonding between Ser196 (5.46) in helix 5 and
the 3-substituted azaindole 4 (Figure 2).28 Due to the
higher distance between the lone pair in position 1 of
the heterocycle and the Ser-OH function, activation of
the receptor by the 2-substituted regioisomer 2 is
unlikely, resulting in complete antagonism.
In conclusion, the 2-aminomethyl substituted aza-
indole 2 (FAUC 213) showed potent D4 binding, high
subtype selectivity, and complete antagonist properties
in ligand-induced mitogenesis experiments. Behavioral
pharmacological studies investigating the potential use
of the D4 antagonist 2 as an atypical neuroleptic agent
are in progress.
(11) Schetz, J . A.; Benjamin, P. S.; Sibley, D. R. Nonconserved
residues in the second tansmembrane-spanning domain of the
D4 dopamine receptor are molecular determinants of D4-
selective pharmacology. Mol. Pharmacol. 2000, 57, 144-152.
(12) Lo¨ber, S.; Hu¨bner, H.; Gmeiner, P. Azaindole derivatives with
high affinity for the dopamine D4 receptor: synthesis, ligand
binding studies and comparison of molecular electrostatic po-
tential maps. Bioorg. Med. Chem. Lett. 1999, 9, 97-102.
(13) Hu¨bner, H.; Kraxner, J .; Gmeiner, P. Cyanoindole derivatives
as highly selective dopamine D4 receptor partial agonists: solid-
phase synthesis, binding assays, and functional experiments. J .
Med. Chem. 2000, 43, 4563-4569.
(14) Go¨sl, R.; Meuwsen, A. 1-Aminopyridinium iodide. Org. Synth.
1963, 43, 1-3.
Ack n ow led gm en t. The authors thank Dr. H. H. M.
Van Tol (Clarke Institute of Psychiatry, Toronto), Dr.
J .-C. Schwartz, and Dr. P. Sokoloff (INSERM, Paris) as
well as Dr. J . Shine (The Garvan Institute of Medical
Research, Sydney) for providing dopamine D4, D3, and
D2 receptor expressing cell lines, respectively. Dr. R.
Huff (Pharmacia & Upjohn, Inc., Kalamazoo, MI) is
acknowledged for providing a D4 expressing cell line
employed for mitogenesis. Thanks are also due to Mrs.
H. Szczepanek, Mrs. B. Linke, and Mrs. P. Schmitt for
skillful technical assistance. This work was supported
by the Deutsche Forschungsgemeinschaft and the Fonds
der Chemischen Industrie.
(15) Anderson, P. L.; Hasak, J . P.; Kahle, A. D.; Paolella, N. A.;
Shapiro, M. J . 1,3-Dipolar addition of pyridine N-imine to
acetylenes and the use of 13-C NMR in several structural
assignments. J . Heterocycl. Chem. 1981, 18, 1149-1152.
(16) Wright, W. B. Alkylation of amines by esters and lithium
aluminium hydride. J . Org. Chem. 1962, 27, 1042-1045.
(17) Boekelheide, V.; Fedoruk, N. A. Syntheses of fused aromatic
heterocycles by 1,3-dipolar addition reactions. 3-azapyrrocolines.
J . Org. Chem. 1968, 33, 2062-2064.
(18) Gmeiner, P.; Sommer, J . Azaindole Derivatives I: Asymmetric
Synthesis of a Novel R-Amino Acid. Arch. Pharm. (Weinheim)
1988, 321, 505-507.
(19) For similar lithiation reactions of 12, see: Aboul-Fadl, T.; Lo¨ber,
S.; Gmeiner, P. Effective and variable functionalization of
pyrazolo[1,5-a]pyridines involving palladium-catalyzed coupling
reactions. Synthesis 2000, 1727-1732 and references therein.
(20) Gmeiner, P.; Sommer, J . Selective Dopamine D2 Autoreceptor
Agonists with 8-Azaindole Substructure: Synthesis and Theo-
retical Investigations. Arch. Pharm. (Weinheim) 1994, 327, 435-
443.
Su p p or tin g In for m a tion Ava ila ble: Complete Experi-
mental Section including detailed information on the synthesis,
analytical characterization, and biological investigations.
(21) Hayes, G.; Biden, T. J .; Selbie, L. A.; Shine J . Structural subtypes
of the dopamine D2 receptor are functionally distinct: expression
of the cloned D2A and D2B subtypes in a heterologous cell line.
Mol. Endocrinol. 1992, 6, 920-926.
(22) Sokoloff, P.; Andrieux, M.; Besanc¸on, R.; Pilon, C.; Martres, M.-
P.; Giros, B.; Schwartz, J .-C. Pharmacology of human dopamine
D3 receptor expressed in a mammalian cell line: comparison
with D2 receptor. Eur. J . Pharmacol. 1992, 225, 331-337.
(23) Asghari, V.; Sanyal, S.; Buchwaldt, S.; Paterson, A.; J ovanovic,
V.; Van Tol, H. H. M. Modulation of intracellular cyclic AMP
levels by different human dopamine D4 receptor variants. J .
Neurochem. 1995, 65, 1157-1165.
(24) Hu¨bner, H.; Haubmann, C.; Utz, W.; Gmeiner, P. Conjugated
enynes as nonaromatic catechol bioisosteres: synthesis, binding
experiments, and computational studies of novel dopamine
receptor agonists recognizing preferentially the D3 subtype. J .
Med. Chem. 2000, 43, 756-762.
(25) Chio, C.; Lajiness, M. E.; Huff, R. M. Activation of heterologously
expressed D3 dopamine receptors: comparison with D2 dopa-
mine receptors. Mol. Pharmacol. 1994, 45, 51-60.
(26) Mierau, J .; Schneider, F. J .; Ensinger, H. A.; Chio, C. L.; Lajiness,
M. E.; Huff, R. M. Pramipexole binding and activation of cloned
and expressed dopamine D2, D3 and D4 receptors. Eur. J .
Pharmacol. 1995, 290, 29-36.
(27) Lanig, H.; Utz, W.; Gmeiner, P. Comparative molecular field
analysis of dopamine D4 receptor antagonists including 3-[4-(4-
chlorophenyl)piperazin-1-ylmethyl]pyrazolo[1,5-a]pyridine (FAUC
113), 3-[4-(4-chlorophenyl)piperazin-1-ylmethyl]-1H- pyrrolo[2,3-
b]pyridine (L-745,870), and clozapine. J . Med. Chem. 2001, 44,
1151-1157.
Refer en ces
(1) Hrib, N. J . The dopamine D4 receptor: a controversial thera-
peutic target. Drugs Future 2000, 25, 587-611 and references
therein.
(2) Seeman, P.; Guan, H. C.; Van Tol, H. H. M. Dopamine D4
receptors elevated in schizophrenia. Nature 1993, 365, 441-445.
(3) Van Tol, H. H. M.; Bunzow, J . R.; Guan, H.-C.; Sunahara, R.
K.; Seeman, P.; Niznik, H. B.; Civelli, O. Cloning of the gene for
a
human dopamine D4 receptor with high affinity for the
antipsychotic clozapine. Nature 1991, 350, 610-614.
(4) Kulagowski, J . J .; Broughton, H. B.; Curtis, N. R.; Mawer, I.
M.; Ridgill, M. P.; Baker, R.; Emms, F.; Freedman, S. B.;
Marwood, R.; Patel, S.; Patel, S.; Ragan, C. I.; Leeson, P. D. 3-[[4-
(4-Chlorophenyl)piperazin-1-yl]methyl]-1H-pyrrolo[2,3-b]pyridine:
an antagonist with high affinity and selectivity for the human
dopamine D4 receptor. J . Med. Chem. 1996, 39, 1941-1942.
(5) Rowley, M.; Bristow, L. J .; Hutson, P. H. Current and novel
approaches to the drug treatment of schizophrenia. J . Med.
Chem. 2001, 44, 477-501.
(6) Gazi, L.; Bobirnac, I.; Danzeisen, M.; Schu¨pbach, E.; Langeneg-
ger, D.; Sommer, B.; Hoyer, D.; Tricklebank, M.; Schoeffter, P.
Receptor density as
a factor governing the efficacy of the
dopamine D4 receptor ligands, L-745,870 and U-101958 at
human recombinant D4.4 receptors expressed in CHO cells. Br.
J . Pharmacol. 1999, 128, 613-620.
(7) Wiens, B. L.; Nelson, C. S.; Neve, K. A. Contribution of serine
residues to constitutive and agonist-induced signaling via the
D2S dopamine receptor: evidence for multiple, agonist-specific
active conformations. Mol. Pharmacol. 1998, 54, 435-444.
(8) J avitch, J . A.; Ballesteros, J . A.; Weinstein, H.; Chen, J . A cluster
of aromatic residues in the sixth membrane spanning segment
of the dopamine D2 receptor is accessible in the binding-site
crevice. Biochemistry 1998, 37, 998-1006.
(28) The receptor partial structure was obtained from www.
gpcr.org/7tm/models/vriend/D4DR_HUMAN.ent. For visualiza-
tion and manual docking, the software package SYBYL 6.7 was
used.
(9) Sansom, S. P.; Weinstein, H. Hinges, swivels and switches: the
role of prolines in signaling via transmembrane R-helices. Trends
Pharmacol. Sci. 2000, 21, 445-451.
J M015522J