D. P. Papahatjis et al. / Bioorg. Med. Chem. Lett. 16 (2006) 1616–1620
1619
10. Singer, M.; Ryan, W. J.; Saha, B.; Martin, B. R.; Razdan,
R. K. J. Med. Chem. 1998, 41, 4400.
analogue 2b and the propyl-phenyl analogue 2c showed
moderate receptor selectivity. Analogue 2b exhibited 2-
fold CB2 selectivity, while analogue 2c showed prefer-
ence for the CB1 cannabinoid receptor. 10,10-Cyclopen-
tyl-10-cyano analogue 2e exhibited adequate Ki values
for both receptors without any selectivity whatsoever.
11. (a) Miyaura, N.; Suzuki, A. Synth. Commun. 1981, 11, 513;
(b) Inada, K.; Miyaura, N. Tetrahedron 2000, 56, 8657.
12. Furstner, A.; Seidel, G. J. Org. Chem. 1997, 62, 2332.
13. (+)-cis/trans-p-Mentha-2,8-dien-1-ol was supplied by
Firmenich, Princeton, NJ.
14. All new compounds 2a, 2b, 2c, 2d, 2e, 2f, 7a, 7d, 7e and
7f were fully characterized by NMR, MS and HRMS
spectra. Selected data of final cannabinoids.
Cannabidiol analogues 7a, 7d, 7e and 7f exhibited en-
hanced CB2 receptor selectivity although their binding
affinities are approximately one order of magnitude low-
er than the binding values of their respective D8-tetrahy-
drocannabinol analogues.
Compound 2a: 1H NMR (300 MHz, CDCl3) d 7.43 (d,
J = 7.9 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 6.68 (d,
J = 1.8 Hz, 1H, 4-H), 6.50 (d, J = 1.8 Hz, 1H, 2-H),
5.45 (br s, 1H, 8-H), 4.84 (s, 1H, OH), 3.23 (dd,
J = 17.1 Hz, J = 4.3 Hz, 1H, 10a-H), 2.76 (ddd as td,
J = 11.0 Hz, J = 4.3 Hz, 1H, 10a-H), 2.36 (s, 3H, CH3),
2.17 (m, 1H, 7a-H), 1.95–1.82 (m, 3H, 10b-H, 7b-H, 6a-
H), 1.71 (s, 3H, 9-CH3), 1.40 (s, 3H, 6b-CH3), 1.13 (s,
3H, 6a-CH3); mass spectrum m/z (relative intensity) 334
(M+, 100), 291 (30), 266 (22), 251 (95), 205 (25), 84 (93).
Exact mass calculated for C23H26O2, 334.1933. Found:
334.1931.
In conclusion, the present study shows that bulky substit-
uents on the C3 position of the cannabinoid moiety are
well tolerated by both receptors, whereas some preference
for CB1 or CB2 is observed based on different chain
lengths of the 4-alkyl-phenyl analogues or upon ring size
variation at the C10-position in the case of C10-cyano-
substituted cannabinoid analogues. The above findings
provide interesting additions to the currently available
SAR for the cannabinoid side chain, while opening up a
new field of research on cannabinoid analogues character-
ized by the privileged biaryl substructure.
Compound 2b: 1H NMR (300 MHz, CDCl3) d 7.45 (d,
J = 7.9 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 6.69 (d,
J = 1.8 Hz, 1H, 4-H), 6.50 (d, J = 1.8 Hz, 1H, 2-H), 5.45
(br s, 1H, 8-H), 4.86 (s, 1H, OH), 3.24 (dd, J = 17.7 Hz,
J = 4.4 Hz, 1H, 10a-H), 2.79–2.63 (m, 3H, 10a-H, –CH2–),
2.17 (m, 1H, 7a-H), 1.95–1.82 (m, 3H, 10b-H, 7b-H, 6a-H),
1.72 (s, 3H, 9-CH3), 1.41 (s, 3H, 6b-CH3), 1.26 (t,
J = 7.3 Hz, 3H, –CH3), 1.14 (s, 3H, 6a-CH3). Exact mass
calculated for C24H28O2, 348.2089. Found: 348.2091.
Compound 2c: 1H NMR (300 MHz, CDCl3) d 7.45 (d,
J = 7.9 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 6.68 (d,
J = 1.7 Hz, 1H, 4-H), 6.50 (d, J = 1.7 Hz, 1H, 2-H), 5.45
(br s, 1H, 8-H), 4.87 (s, 1H, OH), 3.23 (dd, J = 16.5 Hz,
J = 4.3 Hz, 1H, 10a-H), 2.77 (m, 1H, 10a-H), 2.60 (t,
J = 7.3 Hz, 2H, –CH2–), 2.16 (m, 1H, 7a-H), 1.95–1.82 (m,
3H, 10b-H, 7b-H, 6a-H), 1.72 (s, 3H, 9-CH3), 1.65 (m, 2H,
–CH2–), 1.40 (s, 3H, 6b –CH3), 1.14 (s, 3H, 6a-CH3), 0.95 (t,
J = 7.3 Hz, 3H, –CH3); mass spectrum m/z (relative
intensity) 362 (M+, 100), 347 (13), 319 (26), 294 (18), 279
(54), 241 (15). Exact mass calculated for C25H30O2, 362.246.
Found: 362.2246.
Acknowledgments
This work was supported by the National Hellenic
Research Foundation and by the G.S.R.T. Programs
‘Location and use of research results by the creation
of new enterprises (spin-off)’ and YB/60.
References and notes
1. (a) Pertwee, R. G. Curr. Med. Chem. 1999, 6, 635; (b)
Khanolkar, A. D.; Palmer, S. L.; Makriyannis, A. Chem.
Phys. Lipids 2000, 108, 37; (c) Palmer, S. L.; Thakur, G.
A.; Makriyannis, A. Chem. Phys. Lipids 2002, 121, 3; (d)
Thakur, G. A.; Nikas, S. P.; Makriyannis, A. Mini-Rev.
Med. Chem. 2005, 5, 631.
Compound 2d: 1H NMR (300 MHz, CDCl3) d 8.04 (d,
J = 7.9 Hz, 1H), 7.88 (d, J = 7.3 Hz, 1H), 7.80 (d,
J = 7.9 Hz, 1H), 7.50–7.40 (m, 4H), 6.59 (d, J = 1.8 Hz,
1H, 4-H), 6.40 (d, J = 1.8 Hz, 1H, 2-H), 5.48 (br s, 1H, 8-H),
4.87 (s, 1H, OH), 3.29 (dd, J = 15.9 Hz, J = 4.3 Hz, 1H, 10a-
H), 2.82 (m, 1H, 10a-H), 2.19 (m, 1H, 7a-H), 1.98–1.87 (m,
3H, 10b-H, 7b-H, 6a-H), 1.74 (s, 3H, 9-CH3), 1.41 (s, 3H,
6b-CH3), 1.18 (s, 3H, 6a-CH3); mass spectrum m/z (relative
intensity) 370 (M+, 100), 327 (36), 287 (80), 205 (60), 149
(67). Exact mass calculated for C26H26O2, 370.1933. Found:
370.1930.
2. Makriyannis, A.; Rapaka, R. S. Life Sci. 1990, 47,
2173.
3. Papahatjis, D. P.; Kourouli, T.; Abadji, V.; Goutopoulos,
A.; Makriyannis, A. J. Med. Chem. 1998, 41, 1195.
4. (a) Papahatjis, D. P.; Nikas, S. P.; Andreou, T.; Makri-
yannis, A. Bioorg. Med. Chem. Lett. 2002, 12, 3583; (b)
Papahatjis, D. P.; Nikas, S. P.; Kourouli, T.; Chari, R.;
Xu, W.; Pertwee, R. G.; Makriyannis, A. J. Med. Chem.
2003, 46, 3221.
Compound 2e: 1H NMR (300 MHz, CDCl3) d 6.51 (d,
J = 1.8 Hz, 1H), 6.39 (d, J = 1.8 Hz, 1H), 5.70 (s, 1H, OH),
5.42 (d, J = 3.7 Hz, 1H, 8-H), 3.21 (dd, J = 15.5 Hz,
J = 4.3 Hz 1H, 10a-H), 2.70 (td, J = 11.0 Hz, J = 4.9 Hz,
1H, 10a-H), 2.37 (m, 2H, –CH2–), 2.11–1.86 (m, 10H, 7a-H,
10b-H, 7b-H, 6a-H, 6H–CH2–), 1.70 (s, 3H, 9-CH3), 1.37 (s,
3H, 6b-CH3), 1.09 (s, 3H, 6a-CH3); mass spectrum m/z
(relative intensity) 337 (60), 294 (47), 254 (100), 205 (65).
Exact mass calculated for C22H27NO2, 337.2042. Found:
337.2041.
5. Khanolkar, A. D.; Lu, D.; Fan, P.; Tian, X.; Makriyannis,
A. Bioorg. Med. Chem. Lett. 1999, 9, 2119.
6. (a) Luk, T.; Jin, W.; Zvonok, A.; Lu, D.; Lin, X.-Z.;
Chavkin, C.; Makriyannis, A.; Mackie, K. Br. J. Pharma-
col. 2004, 142, 495; (b) Jarbe, T. U. C.; DiPatrizio, N. V.; Lu,
D.; Makriyannis, A. Behav. Pharmacol. 2004, 15, 517.
7. Lu, D.; Meng, Z.; Thakur, G. A.; Fan, P.; Steed, J.;
Tartal, C. L.; Hurst, D. P.; Reggio, P. H.; Deschamps, J.
R.; Parrish, D. A.; George, C.; Jarbe, T. U. C.; Lamb, R.
J.; Makriyannis, A. J. Med. Chem. 2005, 48, 4576.
8. Horton, D. A.; Bourne, G. T.; Mark, L.; Smythe, M. L.
Chem. Rev. 2003, 103, 893.
Compound 2f: 1H NMR (300 MHz, CDCl3) d 6.56 (d,
J = 1.8 Hz, 1H), 6.41 (d, J = 1.8 Hz, 1H), 5.87 (s, 1H, OH),
5.42 (d, J = 3.6 Hz, 1H, 8-H), 3.23 (dd, J = 16.0 Hz,
J = 4.3 Hz, 1H, 10a-H), 2.71 (ddd as td, J = 11.0 Hz,
J = 4.3 Hz, 1H, 10a-H), 2.11 (m, 3H, 7a-H, 2H–CH2–),
9. Hajduk, P. J.; Bures, M.; Praestgaard, J.; Fesik, S. W.
J. Med. Chem. 2000, 43, 3443.