Organic Letters
Letter
P.; Font, J.; Bayon
1534−1543.
(13) Both (E) and (Z) linear vinyl sulfides provide identical reaction
rates and diastereomer ratios. Thus, the studies described herein were
conducted using a mixture of geometric isomers arising from the
synthesis of the substrates via photoinduced radical thiol-ene addition.
(14) (a) Schenck, G. O.; Krauch, C. H. Angew. Chem. 1962, 74, 510−
510. (b) Foote, C. S.; Peters, J. W. J. Am. Chem. Soc. 1971, 93, 3795−
3796.
(15) (a) Harirchian, B.; Bauld, N. L. Tetrahedron Lett. 1987, 28, 927−
930. (b) Lin, S. S.; Padilla, C. E.; Ischay, M. A.; Yoon, T. P. Tetrahedron
Lett. 2012, 53, 3073−3076.
(16) We observe no evidence for competitive photooxidation of the
vinyl ethers, presumably because their redox potentials (ca. +1.67 V vs
́
, P.; Figueredo, M. Eur. J. Org. Chem. 2011, 2011,
by the NIH (1S10 OD020022-1) and by a generous gift from the
Paul J. Bender fund.
REFERENCES
■
(1) (a) Bauld, N. L. Tetrahedron 1989, 45, 5307−5363. (b) Schmittel,
M.; Burghart, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 2550−2589.
(c) Mella, M.; Freccero, M.; Fasani, E.; Albini, A. Chem. Soc. Rev. 1998,
27, 81−89. (d) Saettel, N. J.; Oxgaard, J.; Wiest, O. Eur. J. Org. Chem.
2001, 2001, 1429−1439.
(2) (a) Ischay, M. A.; Yoon, T. P. Eur. J. Org. Chem. 2012, 2012, 3359−
3372. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322−5363. (c) Margrey, K. A.; Nicewicz, K. A. Acc. Chem.
Res. 2016, 49, 1997−2006.
(3) (a) Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132,
8572−8574. (b) Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am.
Chem. Soc. 2011, 133, 19350−19353. (c) Parrish, J. D.; Ischay, M. A.; Lu,
Z.; Guo, S.; Peters, N. R.; Yoon, T. P. Org. Lett. 2012, 14, 1640−1643.
(d) Ischay, M. A.; Ament, M. S.; Yoon, T. P. Chem. Sci. 2012, 3, 2807−
2811. (e) Riener, M.; Nicewicz, D. A. Chem. Sci. 2013, 4, 2625−2629.
(f) Stevenson, S. M.; Shores, M. P.; Ferreira, E. M. Angew. Chem., Int. Ed.
2015, 54, 6506−6510. (g) Higgins, R. F.; Fatur, S. M.; Shepard, S. G.;
Stevenson, S. M.; Boston, D. B.; Ferreira, E. M.; Damrauer, N. H.;
2+
SCE) are outside of the reasonable working range of the Ru*(bpz)3
photocatalyst (+1.45 V vs SCE). See: (a) Koch, D.; Schafer, H.;
Steckhan, E. Chem. Ber. 1974, 107, 3640−3657. (b) Crutchley, R. J.;
Lever, A. B. P. J. Am. Chem. Soc. 1980, 102, 7128−7129.
̈
́
Rappe, A. K.; Shores, M. P. J. Am. Chem. Soc. 2016, 138, 5451−5464.
(4) (a) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012, 134,
18577−18580. (b) Grandjean, J.; Nicewicz, D. A. Angew. Chem., Int. Ed.
2013, 52, 3967−3971. (c) Nguyen, T. M.; Nicewicz, D. A. J. Am. Chem.
Soc. 2013, 135, 9588−9591. (d) Perkowski, A. J.; Nicewicz, D. A. J. Am.
Chem. Soc. 2013, 135, 10334−10337. (e) Nguyen, T. M.; Manohar, N.;
Nicewicz, D. A. Angew. Chem., Int. Ed. 2014, 53, 6198−6201. (f) Wilger,
D. J.; Grandjean, J. M.; Lammert, T.; Nicewicz, D. A. Nat. Chem. 2014, 6,
720−726. (g) Morse, P. D.; Nicewicz, D. A. Chem. Sci. 2015, 6, 270−
274. (h) Gesmundo, N. J.; Grandjean, J. M.; Nicewicz, D. A. Org. Lett.
2015, 17, 1316−1319. (i) Cavanaugh, C. L.; Nicewicz, D. A. Org. Lett.
2015, 17, 6082−6085.
(5) Douglas, J. J.; Nguyen, J. D.; Cole, K. P.; Stephenson, C. R. J.
Aldrichimica Acta 2014, 47, 15−25.
(6) Roth, H. G.; Romero, N. A.; Nicewicz, D. A. Synlett 2016, 27, 714−
723.
(7) Tyson, E. L.; Farney, E. P.; Yoon, T. P. Org. Lett. 2012, 14, 1110−
1113.
(8) Yoshida pioneered the use of “electroauxiliaries” that are analogous
to the concept that we propose here. Electroauxiliaries are generally Si,
Sn, or S substituents that similarly facilitate the oxidation of organic
substrates that are otherwise resistant to one-electron oxidation. In
Yoshida’s formualation, however, the electroauxiliary group is poised to
undergo mesolytic cleavage upon oxidation, resulting in a cationic or
radical reactive intermediate. In contrast, “redox auxiliaries,” as we define
them, are moieties that remain covalently bound throughout the net
transformation, enabling the radical cation reactivity of the substrate to
be directly exploited.
(9) For leading references on the use of electroauxiliary groups in
synthesis, see: (a) Yoshida, J.; Takada, K.; Ishichi, Y.; Isoe, S. J. Chem.
Soc., Chem. Commun. 1994, 2361−2362. (b) Yoshida, J.; Sugawara, M.;
Kise, N. Tetrahedron Lett. 1996, 37, 3157−3160. (c) Yoshida, J.;
Nishiwaki, K. J. Chem. Soc., Dalton Trans. 1998, 2589−2596. (d) Yoshida,
J.; Sugawara, M.; Tatsumi, M.; Kise, N. J. Org. Chem. 1998, 63, 5950−
5961. (e) Shoji, T.; Kim, S.; Yamamoto, K.; Kawai, T.; Okada, Y.; Chiba,
K. Org. Lett. 2014, 16, 6404−6407. (f) Nokami, T.; Isoda, Y.; Sasaki, N.;
Takaiso, A.; Hayase, S.; Itoh, T.; Hayashi, R.; Shimizu, A.; Yoshida, J.
Org. Lett. 2015, 17, 1525−1528.
(10) Wiles, A. A.; Zhang, X.; Fitzpatrick, B.; Long, D. L.; Macgregor, S.
A.; Cooke, G. Dalton Trans. 2016, 45, 7220−7225.
(11) (a) Pabon, R. A.; Bellville, D. J.; Bauld, N. L. J. Am. Chem. Soc.
1984, 106, 2730−2731. (b) Harirchian, B.; Bauld, N. L. J. Am. Chem. Soc.
1989, 111, 1826−1828. (c) Aplin, J. T.; Bauld, N. L. J. Chem. Soc., Perkin
Trans. 2 1997, 853−855.
(12) (a) Lee, J. H.; Zhang, Y.; Danishefsky, S. J. J. Am. Chem. Soc. 2010,
132, 14330−14333. (b) Toribio, G.; Marjanet, G.; Alibes, R.; de March,
́
D
Org. Lett. XXXX, XXX, XXX−XXX