S. A. Giacobbe, R. Di Fabio / Tetrahedron Letters 42 (2001) 2027–2029
2029
diol 6 to give, as expected, a 1:1 mixture of syn and anti
diastereoisomers, which were in turn cyclized to g-lac-
tone 7 in 77% overall yield. Oxidation of the primary
alcohol was carried out following the Swern procedure,
and the aldehyde derivative 8 was used crude in the
next step. Under Horner–Emmons conditions, this
intermediate was coupled to the requisite phosphonate
affording the a,b-unsaturated carbamoyl derivative 9 in
50% yield (over two steps) as a 8:2 mixture of syn and
anti diasteroisomers, in which the stereochemistry of
the double bond was partially controlled (E/Z=84:16).
From here, the route to the product proceeded through
the reductive opening of the g-lactone ring, a reaction
in which the allylic CꢀO bond is chemoselectively
cleaved, leaving the aromatic CꢀI bond unscathed. This
reaction was successfully accomplished by reacting 9
with Bu3SnH in the presence of a catalytic amount of
Pd(PPh3)4 in THF.12 The following treatment with
TMSCHN2 in CH2Cl2/MeOH gave a 1:1 mixture of
desired product 10 and the corresponding isomer 11,
where the double bond had migrated to the b,g-posi-
tion, in 70% total yield after purification by flash
chromatography. The last hurdle having been over-
come, we set out to complete the synthesis by ring-clos-
ing via a Heck-type reaction. When 10 was treated with
Pd(PPh3)4 and triethylamine in DMF, the benzazepine
derivative 12 was isolated, in which, as expected, the E
stereochemistry of the double bond was completely
controlled.13 The final deprotection of the methyl ester
afforded the desired product 2 in 60% yield, over the
last two steps.14
5. Faden, A.; Demediuk, P.; Panter, S.; Vink, R. Science
1989, 244, 798.
6. The NMDA Receptor; Collingridge, G. L.; Watkins, J.
C., Eds.; Oxford University Press: Oxford, 1994.
7. (a) McBain, C. J.; Kleckner, N. W.; Wyrick, S.;
Digledine, R. Mol. Pharmacol. 1989, 33, 2944; (b) Carter,
A. J. Drugs Future 1992, 17, 595; (c) Kemp, J. A.; Leeson,
P. D. TiPS 1993, 14, 20; (d) Leeson, P. D.; Iversen, L. L.
J. Med. Chem. 1994, 37, 4053.
8. (a) Di Fabio, R.; Capelli, A. M.; Conti, N.; Cugola, A.;
Feriani, A.; Gastaldi, P.; Gaviraghi, G.; Hewkin, C. T.;
Micheli, F.; Missio, A.; Mugnaini, M.; Pecunioso, A.;
Quaglia, A. M.; Ratti, E.; Rossi, L.; Tedesco, G.; Trist,
D. G.; Reggiani, A. J. Med. Chem. 1997, 40, 841; (b)
Giacobbe, S. A.; Baraldi, D.; Di Fabio, R. Biorg. Med.
Chem. Lett. 1998, 8, 1689. For the synthesis and the
biological characterization of other series of indole-2-car-
boxylate derivatives, see: (c) Hewkin, C. T.; Di Fabio, R.;
Conti, N.; Cugola, A.; Gastaldi, P.; Micheli, F.; Quaglia,
A. M. Arch. Pharm. Med. Chem. 1999, 332, 55; (d)
Micheli, F.; Di Fabio, R.; Capelli, A. M.; Cugola, A.;
Curcuruto, O.; Feriani, A.; Gastaldi, P.; Gaviraghi, G.;
Marchioro, C.; Orlandi, A.; Pozzan, A.; Quaglia, A. M.;
Reggiani, A.; van Amsterdam, F. Arch. Pharm. Med.
Chem. 1999, 332, 73; (e) Giacobbe, S. A.; Di Fabio, R.;
Baraldi, D.; Cugola, A.; Donati, D. Synth. Commun.
1999, 29, 3125; (f) Di Fabio, R.; Conti, N.; De Magistris,
E.; Feriani, A.; Provera, S.; Sabbatini, F. M.; Reggiani,
A.; Rovatti, L.; Barnaby, R. J. J. Med. Chem. 1999, 42,
3486.
9. (a) Di Fabio, R.; Cugola, A.; Donati, D.; Feriani, A.;
Gaviraghi, G.; Ratti, E.; Trist, D. G.; Reggiani, A. Drugs
Future 1998, 23, 61; (b) Di Fabio, R.; Cugola, A.; Donati,
D.; Feriani, A.; Gaviraghi, G.; Ratti, E.; Trist, D. G.;
Reggiani, A. Book of Abstracts, 211th ACS National
Meeting, New Orleans, LA, March 1996, abstract 107.
10. For an alternative seven-membered ring scaffold explored
to identify novel glycine antagonists, see: Di Fabio, R.;
Antolini, M.; Bertani, B.; Conti, N.; Donati, D.; Feriani,
A.; Messeri, T.; Missio, A.; Pasquarello, A.; Pentassuglia,
G.; Quaglia, A. M.; Reggiani, A.; Sabbatini, F. Book of
Abstracts, 217th ACS National Meeting, Anaheim, CA,
March 1999, abstract 278.
In conclusion, an efficient synthesis of a novel 2-car-
boxybenzo[b]azepine derivative was set up avoiding the
drawbacks associated with the need for protecting the
poorly reactive secondary aromatic amino group.
The pharmacological profile of this novel glycine antag-
onist will be reported in due course.
Acknowledgements
The authors would like to thank the personnel of the
Mass Spectrometry, NMR Spectroscopy and the Ana-
lytical Chemistry Group for spectral and other analyti-
cal data.
11. Di Fabio, R.; Alvaro, G.; Bertani, B.; Giacobbe, S. A.
Can. J. Chem. 2000, 78, 809.
12. (a) Keinan, E.; Greenspoon, N. Tetrahedron Lett. 1982,
23, 241; (b) Keinan, E.; Gleize, P. A. Tetrahedron Lett.
1982, 23, 477.
13. For a related example of intramolecular cis addition/syn
elimination reaction, see: (a) Nagasawa, K.; Zako, Y.;
Ishihara, H.; Shimizu, I. Tetrahedron Lett. 1991, 32, 4937;
(b) Nagasawa, K.; Zako, Y.; Ishihara, H.; Shimizu, I. J.
Org. Chem. 1993, 58, 2523.
References
1. Lipton, S. A.; Rosenberg, P. A. N. Engl. J. Med. 1994,
330, 613.
2. (a) Meldrum, B. Clin. Sci. 1985, 68, 113; (b) Lehman, J.
Drugs Future 1989, 14, 1059.
3. Choi, D. W.; Koh, J. Y.; Peters, S. J. Neurosci. 1988, 8,
185.
4. Maragos, W.; Greenamyre, J.; Penney, J.; Young, A.
Trends Neurosci. 1987, 10, 65.
14. 1H NMR (400 MHz, acetone-d6) l 7.76 (m, 2H), 7.32 (m,
2H), 7.22 (m, 1H), 7.10 (m, 1H), 7.06 (m, 1H), 6.75 (m,
1H), 6.40 (s, 1H), 4.17 (dd, J=12.4 Hz, 4.8 Hz, 1H), 4.06
(m, 1H), 2.67 (m, 1H), 2.52 (m, 1H), 2.18 (m, 1H); IR
(Nujol) wmax (cm−1) 3383, 1736, 1647; MS (FAB) m/z 357
[M+H]+.
.