3
References and notes
1. (a) Speck, K.; Magauer, T. Beilstein J. Org. Chem. 2013, 9, 2048; (b)
Lee, I.-K.; Kim, S.-E.; Yeom, J.-H.; Ki, D.-W.; Lee, M.-S.; Song, J.-G.;
Kim, Y.-S.; Seok, S.-J.; Yun. B.-S. J. Antibiot. 2012, 65, 95; (c)
Choomuenwai, V.; Beattie, K. D.; Healy, P. C.; Andrews, K. T.;
Fechner, N.; Davis. R. A. Phytochemistry 2015, 117, 10.
2. (a) Bisai, V.; Suneja, A.; Singh, V. K. Angew. Chem. Int. Ed. 2014, 53,
10737; (b) Kajanus, J.; Jacobson, I.; Åstrand, A.; Olsson, R. I.; Gran,
U.; Björe, A.; Fjellström, O.; Davidsson, Ö.; Emtenäs, H.; Dahlén, A.;
Löfberg, B.; Yuan, Z.-Q.; Sundell, J.; Cassel, J.; Gyll, J.; Iliefski, T.;
Högberg, Å.; Lindhardt, E.; Malmberg, J. Bioorg. Med. Chem. Lett.
2016, 26, 2023.
3. Buttinoni, A.; Ferrari, M.; Colombo, M.; Ceserani, R. J. Pharm.
Pharmacol. 1983, 35, 603.
4. rmoiry, X.; Aulagner, G.; Facon, T. J. Clin. Pharm. Ther. 2008, 33, 219.
5. Mun, B.; Kim, S.; Yoon, H.; Kim, K. H.; Lee. Y. J. Org. Chem. 2017,
82, 6349.
Scheme 2. Gram-scale synthesis of 3a.
The further transformations of the products were explored
(Scheme 3). The product 3a was reduced with LiAlH4 to furnish
isoindoline 5 in 83% yield. The debenzylation with 1-chloroethyl
chloroformate and the subsequent protection with (Boc)2O
provided product 6 in a good yield. The treatment of 3a with
Bu3SnH/AIBN afforded an organostannane intermediate, which
was protonized with TFA to give compound 7. The
organostannane intermediate could also undergo a Stille coupling
with aryl iodide to provide compound 8 in 43% yield.
6. (a) Comins, D. L.; Schilling, S.; Zhang, Y. Org. Lett. 2005, 7, 95; (b)
Flores B.; Molinski; T. F. Org. Lett. 2011, 13, 3932; (c) Suneja, A.;
Bisai, V.; Singh, V. K. J. Org. Chem. 2016, 81, 4779.
7. Brahmchari, D.; Verma, A. K.; Mehta; S. J. Org. Chem. 2018, 83, 3339.
8. (a) Das, S.; Addis, D.; Knopke, L. R.; Bentrup, U.; Junge, K.; Bruckner,
A.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 9180; (b) Ding, G.; Li,
C.; Shen, Y.; Lu, B.; Zhang, Z.; Xie. X. Adv. Synth. Catal. 2016, 358,
1241.
9. (a) Kumar, V.; Sharma, S.; Sharma, U.; Singh, B.; Kumar, N. Green
Chem. 2012, 14, 3410; (b) Shi, L.; Hu, L.; Wang, J.; Cao, X.; Gu. H.
Org. Lett. 2012, 14, 1876; (c) Zhou, Y.; Chen, P.; Lv, X.; Niu, J.; Wang,
Y.; Lei, M.; Hu. L. Tetrahedron Lett. 2017, 58, 2232.
10. (a) Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.;
Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126,
14342; (b) Han, Q.; Fu, S.; Zhang, X.; Lin, S.; Huang, Q. Tetrahedron
Lett. 2016, 57, 4165; (c) Yoo, J. M.; Ho, S. L.; Cho, C. S. Synlett 2016,
27, 1383.
11. (a) Zhu, C.; Liang, Y.; Hong, X.; Sun, H.; Sun, W.-Y.; Houk, K. N.;
Shi, Z. J. Am. Chem. Soc. 2015, 137, 7564; (b) Verma, A.; Patel, S.;
Meenakshi; Kumar, A.; Yadav, A.; Kumar, S.; Jana, S.; Sharma, S.;
Prasad, C. D.; Kumar, S. Chem. Commun. 2015, 51, 1371; (c) Nozawa-
Kumada, K.; Kadokawa, J.; Kameyama, T.; Kondo, Y. Org. Lett. 2015,
17, 4479.
12. (a) Wertjes, W. C.; Wolfe, L. C.; Waller, P. J.; Kalyani. D. Org. Lett.
2013, 15, 5986; (b) Wertjes, W. C.; Waller, P. J.; Shelton, K. E.;
Kalyani, D. Synthesis 2014, 46, 3033; (c) Fujihara, T.; Yoshida, A.;
Satou, M.; Tanji, Y.; Terao, J.; Tsuji, Y. Catal. Commun. 2016, 84, 71.
13. (a) Miura, H.; Terajima, S.; Tsutsui, K.; Shishido. T. J. Org. Chem.
2017, 82, 1231; (b) Tian, Y.; Sun, J.; Zhang, K.; Li, G.; Xu. F. Synthesis
2018, 50, 2255.
14. Ling, F.; Li, Z.; Zheng, C.; Liu, X.; Ma, C. J. Am. Chem. Soc. 2014,
136, 10914.
15. For a review of benzannulation reactions, see: Kotha, S.; Misra, S.;
Halder. S. Tetrahedron 2008, 64, 10775.
16. For the reviews of [3 + 3] benzannulation reactions, see: (a) Katritzky,
A. R.; Li, J. Q.; Xie, L. H. Tetrahedron 1999, 55, 8263; (b) Feng, J.;
Liu, B. Tetrahedron Lett. 2015, 56, 1474.
17. Joshi, P. R.; Undeela, S.; Reddy, D. D.; Singarapu, K. K.; Menon, R. S.
Org. Lett. 2015, 17, 1449.
Scheme 3. Synthetic applications of 3a.
In conclusion, we have developed a [3+3] benzannulation
strategy for the synthesis of functionalized isoindolinones from
4-arylmethylene-2,3-dioxopyrrolidines
and 1,3-bissulfonyl-
propenes (or 4-sulfonylcrotonates). Excellent yields were
generally obtained under mild reaction conditions. The sulfonyl
group acts as both the activating group at the initial stage and the
leaving group at the last stage. The further elaborations of the
products were also achieved via the reduction, the
desulfonylation and the Stille coupling. The new method is of
good practicability for the synthesis of isoindolinone derivatives.
18. Tang, X.-Z.; Tong, L.; Liang, H.-J.; Liang, J.; Zou, Y.; Zhang, X.-J.;
Yan, M.; Chan, A. S. C. Org. Biomol. Chem. 2018, 16, 3560.
Acknowledgments
We thank the National Natural Science Foundation of China (No.
21472248, 21772240), the Guangzhou Science Technology and
Innovation Commission (201707010210) for the financial support of
this study.
Supplementary Material
Supplementary data related to this article can be found at