10.1002/anie.201706788
Angewandte Chemie International Edition
COMMUNICATION
Obtaining a co-crystal structure of (S,S)-6 bound to
KDM2A proved challenging, and hence, non-denaturing mass
spectrometry (MS) experiments were performed to determine
the binding stoichiometry of (S,S)-6 to KDM2A. KDM2A was
incubated with (S,S)-6 and subsequently introduced into a mass
spectrometer under conditions optimized for the preservation of
noncovalent interactions.[32] The native mass spectrum (Figure
3B) shows 1:1 binding of (S,S)-6 to KDM2A. To verify the
identity of bound (S,S)-6 we performed tandem-MS on the 14+
charge state, resulting in the removal of (S,S)-6 as a singly
charged species (Figure 3C, see inset).
how the generation of three-dimensional scaffolds bearing
significant saturation and multiple chiral centers can lead to the
discovery of selective compounds that may be useful in the
study of a challenging epigenetic target.
Acknowledgements
We are indebted to Stephen V. Frye (UNC Chapel Hill), Tomasz
Konopka and Erica De Zan (Oxford), and Guillermo Senisterra,
(SGC Toronto), for assistance. We thank Prof. Xiang Wang (CU
Boulder) for the gift of fluorescent methylstat. We are grateful to
the ERC (grant no. 259056), the EPSRC and MRC
(EP/L016044/1), Waters Corporation/BBSRC (BB/L017067/1),
the National Institutes of General Medical Sciences
(GM100919), Innovative Medicines Initiative (EU/EFPIA
[ULTRA-DD grant no. 115766]), the Wellcome Trust
[092809/Z/10/Z], Cancer Research UK (C8717/A18245) and the
Royal Society Dorothy Hodgkin Fellowship (A.K.). The SGC is a
charity (number 109773 7).
Keywords: epigenetics, lysine demethylase, enantioselective
catalysis, inhibitor, selective
[1]
[2]
a) M. A. Dawson, T. Kouzarides, Cell 2012, 150, 12. b) J. R. Tollervey,
V. V. Lunyak, Epigenetics 2012, 7, 823. c) P. Sen, P. P. Shah, R.
Nativio, S. L. Berger, Cell 2016, 166, 822.
a) H. Kantarjian, et al., Cancer 2006, 106, 1794. b) P. K. Mazur et al.,
Nat. Med. 2015, 21, 1163.
Figure 3: Non-denaturing MS indicates 1:1 binding of (S,S)-6 to KDM2A. [A]
Non-denaturing mass spectrum of apo KDM2A. [B] Non-denaturing mass
spectrum of KDM2A (2.5 µM) and the 1:1 complex with (S,S)-6 (12.5 µM). [C]
The 14+ charge state of the complex was selected (lower) and subjected to
collisional activation (upper) to release bound (S,S)-6 (inset). The spectrum
intensity has been magnified 1.5-fold above 3500 m/z (CID = collision-induced
dissociation).
[3]
[4]
[5]
S. Ackloo, P. J. Brown, S. Müller, Epigenetics 2017, 12, 378.
M. Moustakim et al., Med. Chem. Commun. 2016, 7, 2246.
For reviews of histone demethylase inhibitors see: a) T. E. McAllister, K.
S. England, R. J. Hopkinson, P. E. Brennan, A. Kawamura, C. J.
Schofield, J. Med. Chem. 2016, 59, 1308. b) J. W. Højfeldt, K. Agger, K.
Helin, Nat. Rev. Drug Discov. 2013, 12, 917. c) H. Ümit Kaniskan, J. Jin,
Chem. Rev. 2017, DOI: 10.1021/acs.chemrev.6b00801.
I. J. Clifton, M. A. McDonough, D. Ehrismann, N. J. Kershaw, N.
Granatino, C. J. Schofield, J. Inorg. Biochem. 2006, 100, 644.
R. J. Klose, E. M. Kallin, Y. Zhang, Nat. Rev. Genet. 2006, 7, 715.
R. J. Hopkinson et al., Chem. Sci. 2013, 4, 3110.
[6]
[7]
[8]
[9]
Kinetic analyses subsequently revealed that (S,S)-6 does not
display competitive inhibition kinetics with respect to either 2-OG
or the peptide substrate (SI-6), suggesting a different mode of
inhibition to the majority of previously-discovered KDM
inhibitors.[33] Consistent with this observation, (S,S)-6 did not
displace fluorescent methylstat (a ‘bivalent’ substrate-cofactor
tracer for KDM2A) in fluorescence polarisation assays. To probe
the (S,S)-6 binding site further, KDM2A was subjected to
photoaffinity labelling profile by a diazirine-containing analogue
of (S,S)-6, and LC-MS/MS experiments were conducted (SI-7).
The majority of covalently-modified residues were found to be
either aspartic or glutamic acids, suggesting the formation of a
relatively long-lived electrophilic intermediate following photo-
induced isomerization of the diazirine to a diazo compound.[34]
While this precludes the unambiguous determination of the
inhibitor binding site, the observed lack of labelling within the
JmjC domain active site (SI-7) is consistent with the observed
lack of competitive inhibition with respect to either 2-OG or the
peptide substrate. This may indicate the presence of an
alternative (allosteric) binding site specific to KDM2A/7A, though
further investigation is necessary to demonstrate this clearly.
In conclusion, we have developed a potent and highly
selective first-in-class inhibitor of the histone lysine
demethylases KDM2A/7A. Compound (S,S)-6 displays >75 fold
selectivity towards KDM2A/7A versus other JmjC lysine
demethylases and is, to our knowledge, the first reported
selective KDM2A/7A inhibitor demonstrated to reduce
H3K36me2 demethylation within cells. This study demonstrates
N. R. Rose et al., J. Med. Chem. 2012, 55, 6639.
[10] L. Kruidenier, et.al., Nature 2012, 488, 404.
[11] J. Liang et al., Bioorg. Med. Chem. Lett. 2016, 26, 4036.
[12] T. Suzuki et al., J. Med. Chem. 2013, 56, 7222.
[13] J. R. Horton et al., Cell Chem. Biol. 2016, 23, 769.
[14] a) X. Luo et al., J. Am. Chem. Soc. 2011, 133, 9451. b) K. S. England
et al., MedChemComm 2014, 5, 1879.
[15] a) U. Leurs, B. Lohse, K. D. Rand, S. Ming, E. S. Rise, P. A. Cole, J. L.
Kristensen, R. P. Clausen, ACS Chem. Biol. 2014, 9, 2131. b) A.
Kawamura et al., Nat. Commun. 2017, 8, 14773.
[16] Y. Tsukada, J. Fang, H. Erdjument-Bromage, M. E. Warren, C. H.
Borchers, P. Tempst, Y. Zhang, Nature 2006, 439, 811.
[17] T. Lu, M. W. Jackson, A. D. Singhi, E. S. Kandel, M. Yang, Y. Zhang, A.
V. Gudkov, G. R. Stark, Proc. Natl. Acad. Sci. U. S. A. 2009, 106,
16339.
[18] J. Du, Y. Ma, P. Ma, S. Wang, Z. Fan, Stem Cells 2013, 31, 126.
[19] Y. Huang, Y. Liu, L. Yu, J. Chen, J. Hou, L. Cui, D. Ma, W. Lu, Tumor
Biol. 2015, 36, 271.
[20] S. S. Dhar, H. Alam, N. Li, K. W. Wagner, J. Chung, Y. W. Ahn, M. G.
Lee, J. Biol. Chem. 2014, 289, 7483.
[21] a) V. Bavetsias et al., J. Med. Chem. 2016, 59, 1388. b) S. B. Hatch et
al., Epigenetics Chromatin, 2017, 10:9.
[22] A. K. Upadhyay et al., J. Mol. Biol. 2012, 416, 319.
[23] J. M. Herold et al., J. Med. Chem. 2011, 54, 2504.
[24] a) A. R. Leach, M. M. Hann, Curr. Opin. Chem. Biol. 2011, 15, 489. b)
F. Lovering, Med. Chem. Commun. 2013, 4, 515. c) P. A. Clemons et
al. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 18787.
[25] A. Kawamura, A. Tumber, N. R. Rose, O. N. F. King, M. Daniel, U.
Oppermann, T. D. Heightman, C. J. Schofield, Anal. Biochem. 2010,
404, 86.
[26] S. E. Hutchinson et al., J. Biomol. Screening 2012, 17, 39.
[27] a) E. E. Maciver, S. Thompson, M. D. Smith, Angew. Chem. Int. Ed.
2009, 48, 9979. b) K. Sharma, J. R. Wolstenhulme, P. P. Painter, D.
Yeo, F. Grande-Carmona, C. P. Johnston, D. J. Tantillo, M. D. Smith, J.
Am. Chem. Soc. 2015, 137, 13414.
[28] S. B. Hatch et al., Epigenetics Chromatin 2017, 10, 9.
[29] J. R. Horton, A. K. Upadhyay, H. H. Qi, X. Zhang, Y. Shi, X. Cheng,
Nat. Struct. Mol. Biol. 2010, 17, 38.
This article is protected by copyright. All rights reserved.