Organic Letters
Letter
(5) Dinnell, K.; Chicchi, G. G.; Dhar, M. J.; Elliott, J. M.;
Hollingworth, G. J.; Kurtz, M. M.; Ridgill, M. P.; Rycroft, W.; Tsao,
K. L.; Williams, A. R.; Swain, C. J. 2-Aryl indole NK1 receptor
antagonists: optimization of the 2-Aryl ring and the indole nitrogen
substituent. Bioorg. Med. Chem. Lett. 2001, 11, 1237.
(6) For recent reviews: (a) Heravi, M.; Rohani, S.; Zadsirjan, V.;
Zahedi, N. Fischer indole synthesis applied to the total synthesis of
natural products. RSC Adv. 2017, 7, 52852. (b) Inman, M.; Moody, C.
J. Indole synthesis − something old, something new. Chem. Sci. 2013,
4, 29. (c) Soto, S.; Vaz, E.; Dell’Aversana, C.; Alvarez, R.; Altucci, L.;
de Lera, A. R. New synthetic approach to paullones and character-
ization of their SIRT1 inhibitory activity. Org. Biomol. Chem. 2012, 10,
2101. (d) Taber, D. F.; Tirunahari, P. K. Indole synthesis: a review and
proposed classification. Tetrahedron 2011, 67, 7195. (e) Humphrey, G.
R.; Kuethe, J. T. Practical Methodologies for the Synthesis of Indoles.
Chem. Rev. 2006, 106, 2875.
(13) Fukuyama, T.; Chen, X.; Peng, G. A Novel Tin-Mediated Indole
Synthesis. J. Am. Chem. Soc. 1994, 116, 3127.
(14) Tobisu, M.; Fujihara, H.; Koh, K.; Chatani, N. Synthesis of 2-
boryl- and silylindoles by copper-catalyzed borylative and silylative
cyclization of 2-alkenylaryl isocyanides. J. Org. Chem. 2010, 75, 4841.
(15) Pinney, V. R. Malodorant Compositions. USOO6242489 B1
2001.
(16) Ugi, I.; Fetzer, U.; Eholzer, U.; Knupfer, H.; Offermann, K.
Isonitrile Syntheses. Angew. Chem., Int. Ed. Engl. 1965, 4, 472.
(17) For recent reviews: (a) Lummiss, J. A. M.; Morse, P. D.;
Beingessner, R. L.; Jamison, T. F. Towards More Efficient, Greener
Syntheses through Flow Chemistry. Chem. Rec. 2017, 17, 667.
(b) Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.; Battilocchio,
C.; Ley, S. V.; Stevens, C. V. Taming hazardous chemistry by
continuous flow technology. Chem. Soc. Rev. 2016, 45, 4892.
(c) Gutmann, B.; Cantillo, D.; Kappe, C. O. Continuous-Flow
TechnologyA Tool for the Safe Manufacturing of Active
Pharmaceutical Ingredients. Angew. Chem., Int. Ed. 2015, 54, 6688.
(d) Newman, S. G.; Jensen, K. F. The role of flow in green chemistry
and engineering. Green Chem. 2013, 15, 1456. (e) Baumann, M.;
Baxendale, I. R.; Ley, S. V. The flow synthesis of heterocycles for
natural product and medicinal chemistry applications. Mol. Diversity
2011, 15, 613.
(18) For recent reviews: (a) Morse, P. D.; Beingessner, R. L.;
Jamison, T. F. Enhanced Reaction Efficiency in Continuous Flow. Isr.
J. Chem. 2017, 57, 218. (b) Plutschack, M. B.; Pieber, B.; Gilmore, K.;
Seeberger, P. H. The Hitchhiker’s Guide to Flow Chemistry parallel.
Chem. Rev. 2017, 117, 11796. (c) Glasnov, T. N.; Kappe, C. O.
Continuous-flow syntheses of heterocycles. J. Heterocyclic Chem. 2011,
48, 11.
(19) For recent reviews: (a) McQuade, D. T.; Seeberger, P. H.
Applying flow chemistry: methods, materials, and multistep synthesis.
J. Org. Chem. 2013, 78, 6384. (b) Webb, D.; Jamison, T. F. Continuous
flow multi-step organic synthesis. Chem. Sci. 2010, 1, 675.
(20) Bao, J.; Tranmer, G. K. The utilization of copper flow reactors in
organic synthesis. Chem. Commun. 2015, 51, 3037.
(21) Cahiez, G.; Marquais, S. Copper-Catalyzed Alkylation of
Organomanganese Chloride Reagents1. Synlett 1993, 1993, 45.
(22) Cahiez, G.; Chaboche, C.; Jezequel, M. Cu-Catalyzed Alkylation
́ ́
of Grignard Reagents: A New Efficient Procedure. Tetrahedron 2000,
56, 2733.
(7) Vicente, R. Recent advances in indole syntheses: new routes for a
classic target. Org. Biomol. Chem. 2011, 9, 6469.
(8) For recent reviews: (a) Sadjadi, S.; Heravi, M. M.; Nazari, N.
Isocyanide-based multicomponent reactions in the synthesis of
heterocycles. RSC Adv. 2016, 6, 53203. (b) Chakrabarty, S.;
Choudhary, S.; Doshi, A.; Liu, F. Q.; Mohan, R.; Ravindra Manasa,
P.; Shah, D.; Yang, X.; Fleming Fraser, F. Catalytic Isonitrile Insertions
and Condensations Initiated by RNC−X Complexation. Adv. Synth.
Catal. 2014, 356, 2135. (c) Qiu, G.; Ding, Q.; Wu, J.; Maes, B.; Orru,
R.; Ruijter, E.; Orru, R.; Ruijter, E.; Orru, R. Recent advances in
isocyanide insertion chemistry. Chem. Soc. Rev. 2013, 42, 5257.
(d) Lygin, A. V.; de Meijere, A. Isocyanides in the synthesis of nitrogen
heterocycles. Angew. Chem., Int. Ed. 2010, 49, 9094. (e) Campo, J.;
García-Valverde, M.; Marcaccini, S.; Rojo, M. J.; Torroba, T. Synthesis
of indole derivatives via isocyanides. Org. Biomol. Chem. 2006, 4, 757.
(9) For select recent examples of heterocycle synthesis from
arylisocyanides: (a) Ye, Y.; Cheung, K. P. S.; He, L.; Tsui, G. C.
Synthesis of 2-(Trifluoromethyl)indoles via Domino Trifluoromethy-
lation/Cyclization of 2-Alkynylanilines. Org. Lett. 2018, 20, 1676.
(b) He, Y.; Wang, X.; Xiao, J.-A.; Pang, J.; Gan, C.; Huang, Y.; Huang,
C. Metal-free oxidative isocyanides insertion with aromatic aldehydes
to aroylated N-heterocycles. RSC Adv. 2018, 8, 3036. (c) Gao, Y.; Hu,
Z.; Dong, J.; Liu, J.; Xu, X. Chemoselective Double Annulation of Two
Different Isocyanides: Rapid Access to Trifluoromethylated Indole-
Fused Heterocycles. Org. Lett. 2017, 19, 5292. (d) Xiong, Z.; Wang, J.;
Wang, Y.; Luo, S.; Zhu, Q. Palladium-catalyzed C(sp2)-H amino-
imidoylation of isocyano-containing arenes: synthesis of amino
substituted N-heterocycles. Org. Chem. Front. 2017, 4, 1768. (e) Li,
D.; Mao, T.; Huang, J.; Zhu, Q. Denitrogenative Imidoyl Radical
Cyclization: Synthesis of 2-Substituted Benzoimidazoles from 1-Azido-
2-isocyanoarenes. Org. Lett. 2017, 19, 3223. (f) Evoniuk, C. J.; Gomes,
G. D. P.; Ly, M.; White, F. D.; Alabugin, I. V. Coupling Radical
Homoallylic Expansions with C-C Fragmentations for the Synthesis of
Heteroaromatics: Quinolines from Reactions of o-Alkenylarylisoni-
triles with Aryl, Alkyl, and Perfluoroalkyl Radicals. J. Org. Chem. 2017,
82, 4265. (g) Li, Y.; Chao, A.; Fleming, F. F. Isonitrile alkylations: a
rapid route to imidazo[1,5-a]pyridines. Chem. Commun. 2016, 52,
2111.
(10) Onitsuka, K.; Suzuki, S.; Takahashi, S. A novel route to 2,3-
disubstituted indoles via palladium-catalyzed three-component cou-
pling of aryl iodide, o-alkenylphenyl isocyanide and amine. Tetrahedron
Lett. 2002, 43, 6197.
(11) Nanjo, T.; Yamamoto, S.; Tsukano, C.; Takemoto, Y. Synthesis
of 3-Acyl-2-arylindole via Palladium-catalyzed Isocyanide Insertion and
Oxypalladation of Alkyne. Org. Lett. 2013, 15, 3754.
(12) For recent reviews: (a) Chakrabarty, S.; Choudhary, S.; Doshi,
A.; Liu, F.-Q.; Mohan, R.; Ravindra, M. P.; Shah, D.; Yang, X.;
Fleming, F. F. Catalytic Isonitrile Insertions and Condensations
Initiated by RNC-X Complexation. Adv. Synth. Catal. 2014, 356, 2135.
(b) Tokuyama, H.; Fukuyama, T. Indole synthesis by radical
cyclization of o-alkenylphenyl isocyanides and its application to the
total synthesis of natural products. Chem. Rec. 2002, 2, 37.
E
Org. Lett. XXXX, XXX, XXX−XXX