G. Herve et al.
4.04 (s, 4H), 4.08 (AB, J=14 Hz, 8H), 4.24 (s, 4H), 5.9–6.3 (m, 12H),
7.35 ppm (m, 6H); 13C NMR (200 MHz, CDCl3): d=49.2, 50.3, 77.2, 80.3,
108.1, 108.4, 110.7, 142.3, 142.4, 154.0, 154.8 ppm; IR (KBr): n˜ =3144,
3018, 2946, 2917, 2855, 1600, 1507, 1450, 1384, 1352, 1336, 1288, 1273,
1244, 1216, 1174, 1161, 1147, 1124, 1075, 1060, 1018, 1010, 992, 945, 918,
897, 885, 837, 810, 767, 740, 728, 670, 654, 600 cmꢀ1; MS (70 eV, EI): m/z
(%): 567 (4) [MꢀCH2C4H3O]+; MS (CI+): m/z (%): 649 (100) [M+H]+,
567 (10) [MꢀCH2C4H3O]+, 487 (10) [M+Hꢀ2(CH2C4H3O)]+; elemental
analysis calcd (%): C 66.7, H 5.5, N 13.0; found: C 66.4, H 5.6, N 12.9.
[7] a) J. H. Robson, J. J. Reinhart, J. Am. Chem. Soc. 1955, 77, 2453–
2455; b) “Industrial and Laboratory Nitrations”: E. E. Gilbert, J. R.
Leccacorvi, M. Warnan, ACS Symp. Ser. 1976, 22, 327–340; c) V. T.
Ramakrishnan, M. Vedachaban, J. H. Boyer, Heterocycles 1990, 31,
479–480; d) “Nitration: Recent Laboratory and Industrial Develop-
ments”: R. W. Millar, ACS Symp. Ser. 1996, 623, Chap. 16; e) “Nitra-
tion: Recent Laboratory and Industrial Developments”: P. F. Pago-
ria, A. R. Mitchell, R. D. Schmidt, C. L. Coon, E. S. Jessop, ACS
Symp. Ser. 1996, 623, Chap. 12; f) G. Piacenza, G. Jacob, A. Girard,
H. Graindorge, R. Gallo, Int. Annu. Conf. ICT 1997, 124, 1–14.
[8] T. M. Klapçtke, B. Krumm, H. Piotrowski, K. Polborn, G. Holl,
Chem. Eur. J. 2003, 9, 687–694.
[9] a) G. E. P. Box, W. G. Hunter, J. S. Hunter in Statistics for Experi-
menters, John Wiley, New York, 1978; b) R. Carlson in Design and
Optimization in Organic Synthesis, Elsevier, Amsterdam, 1992;
c) for a recent example, see: H. R. Bjorsvik, L. Ligori, J. A. Vedia
Meriners, J. Org. Chem. 2002, 67, 7493–7500.
[10] a) S. Kobayashi, I. Hachiya, J. Org. Chem. 1994, 59, 3590–3596;
b) S. Kobayashi, K. Manabe, Acc. Chem. Res. 2002, 35, 218–225.
[11] Regarding the yields obtained with benzylamines and derivatives:
our values (17–62%) are comparable to the values obtained by Niel-
sen in MeOH (ref. [3], 11–64%); smaller than the values by the
same author in acetonitrile (ref. [3], 24–80%); larger than the
values reported by Klapçtke (ref. [8], 5–32%).
Hexapropargylhexaazaisowurtzitane (2 f): The mixture was stirred for 1 h
at 08C then concentrated under vacuum (T<308C). Dichloromethane
(150 mL) was added and the organic layer was washed twice with distil-
led water (220 mL), dried over magnesium sulfate, filtrated, and con-
centrated under vacuum at 258C. A deep-red oil was obtained and was
purified further by flash chromatography on deactivated (3% H2O) basic
alumina gel (hexane/Et2O, 7:3) giving a white solid (17%). M.p. 1148C;
1H NMR (400 MHz, CDCl3): d=2.21 (t, J=2 Hz, 4H), 2.28 (t, J=2 Hz,
2H), 3.78 (m, 12H), 4.15 (s, 2H), 4.47 ppm (s, 4H); 13C NMR (200 MHz,
CDCl3): d=41.3, 42.2, 71.4, 73.3, 75.6, 80.8, 80.9, 81.6 ppm; IR (KBr): n˜ =
3291, 3213, 2952, 2941, 2925, 2878, 2819, 1637, 1437, 1384, 1354, 1340,
1297, 1187, 1166, 1137, 1074, 1015, 999, 925, 895, 800, 675, 659, 631 cmꢀ1
;
MS (70 eV, EI): m/z (%): 357 (100) [MꢀCH2CCH]+; MS (CI+): m/z
(%): 397 (100) [M+H]+; elemental analysis calcd (%): C 72.7, H 6.1, N
21.2; found: C 72.7, H 6.2, N 19.8.
[12] A 1H NMR analysis of HBIW was performed in CDCl3 by using a
400 MHz spectrometer; the HBIW NMR spectrum indeed shows an
AB quartet as observed for the new hexaazaisowutzitane com-
pounds described: d=3.59 (s, 2H), 4.04 (s, 4H), 4.09 (AB, J=12 Hz,
8H), 4.17 (s, 4H), 7.20–27.24 ppm (m, 30H).
[13] An old US patent describes the condensation of a-methylbenzyla-
mine and a,a’-dimethylbenzylamine with glyoxal to produce dii-
mines: M. D. Hurwitz US-2582128, 1952.
[14] a) G. F. Whitfield, R. Johnson, D. J. Swern, J. Org. Chem. 1972, 37,
95–99; b) J. M. Kliegman, R. K. Barnes, Tetrahedron 1970, 26,
2555–2560; c) M. Chaykowski, W. M. Koppes, T. P. Russel, R. Gilar-
di, C. George, J. L. Flippen-Anderson, J. Org. Chem. 1992, 57,
4295–4297; d) J. M. Kliegman, R. K. Barnes, J. Org. Chem. 1970, 35,
3140–3143; e) M. R. Crampton, H. Javed, M. Ross, G. Fergusson, J.
Chem. Soc. Perkin Trans. 1 1993, 923–929; f) K. Karaghiosoff, T. M.
Klapçtke, A. Michailovski, H. Nçth, M. Suter, Propellants Explos.
Pyrotech. 2003, 28, 1–6.
Hexa(1-naphtylmethylene)hexaazaisowurtzitane (2g): Over a 10–15 min
period, glyoxal (4.61 g, 40% aqueous solution, 0.032 mol) was added
dropwise to a solution of 1-aminomethylnaphtalene (14.97 g, 0.093 mol),
water (5 mL), ytterbium trifluoromethylsulfonate (2.07 g, 3.2 mmol), one
drop of antifoam A (Fluka supplier) in acetonitrile (150 mL), during
which the temperature was maintained at between 0 and 58C. The mix-
ture was stirred for three days at ambient temperature. A white solid
product (62%) was filtrated and dried over P2O5. M.p. 244–2458C
(decomp); 1H NMR (400 MHz, CDCl3): d=3.45 (s, 2H), 4.33 (AB, J=
14 Hz, 8H), 4.60 (s, 4H), 4.69 (s, 4H), 5.90 (m, 4H), 6.89 (m, 4H), 7.3–
8.2 ppm (m, 34H); 13C NMR (200 MHz, CDCl3): d=53.2, 55.2, 77.7, 78.3,
124.8, 125.2, 125.3, 125.4, 125.6, 125.7, 125.8, 125.9, 126.6, 127.36, 127.39,
127.8, 128.5, 128.7, 132.4, 132.6, 134.0, 134.2, 135.6, 136.0 ppm; MS (IS):
m/z: 1009; elemental analysis calcd (%): C 85.7, H 6.0, N 8.3; found: C
85.2, H 6.0, N 8.3.
[15] T. Nielsen, R. L. Atkins, D. W. Moore, R. Scott, D. Mallory, J. M.
Laberge, J. Org. Chem. 1973, 38, 3288–3295.
[1] F. Vçgtle, Fascinating Molecules in Organic Chemistry, John Wiley,
Chichester, 1992.
[2] C. A. Cupers, L. Hodakowski, J. Am. Chem. Soc. 1974, 96, 4668–
4669.
[3] A. T. Nielsen, R. A. Nissan, D. J. Vanderah, C. L. Coon, R. D. Gilar-
di, C. F. George, J. Flippen-Anderson, J. Org. Chem. 1990, 55, 1459–
1466.
[16] Calculations were carried out with HYPERCHEM.6.03 (ref. [17])
by using the MM+ program with the option Fletcher-Reeves.
[17] HYPERCHEM.6, Hypercube, Gainesville (FL) 2000.
[18] J. Gordon, R. A. Ford in The Chemistꢀs Companion; John Wiley,
New York, 1972.
[19] G. Cagnon, G. Eck, G. HervØ, G. Jacob, US-260086, 2004; EP-
1479683, 2004.
[20] See, for example: J. C. Sheelan, W. A. Bolhofer, J. Am. Chem. Soc.
1950, 72, 2768–2788.
[21] J. D. Roberts, R. H. Mazur, J. Am. Chem. Soc. 1951, 73, 2509–2520.
[22] G. F. Hennion, C. V. Digiovanna, J. Org. Chem. 1965, 30, 2645–
2650.
[23] R. Popielarz, D. R. Arnold, J. Am. Chem. Soc. 1990, 112, 3068–
3082.
[24] P. C. Kamer, J. Noelte, M. Roeland, W. Drenth, J. Am. Chem. Soc.
1988, 110, 6818–6825.
[25] Bruker-Nonius, Kappa CCD Reference Manual, Nonius B. V., P. O.
Box 811, 2600 Av, Delft (The Netherlands), 1998.
[4] a) P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermo-
chim. Acta 2002, 384, 187–204; b) H. Bazaki, S. Kawabe, H. Miya,
T. Kodama, Propellants Explos. Pyrotech. 1998, 23, 333–336;
c) A. T. Nielsen in Chemistryof Energetic Materials (Eds.: G. A.
Olah, D. R. Squire), Academic Press, San Diego, 1991, pp. 95–124;
d) “Energetic Materials–Modeling of Phenomena, Experimental
Characterization, Environmental Engineering”: T. M. Klapçtke, B.
Krumm, G. Holl, M. Kaiser, Int. Annu. Conf. ICT 1999, 120–121.
[5] A. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P.
Nadler, R. A. Nissan, D. J. Vanderah, R. D. Gilardi, C. L. George,
J. L. Flippen-Anderson, Tetrahedron 1998, 54, 11793–11812.
[6] Recent procedures, other than the three-step synthesis described in
ref. [5], all use HBIW as the starting material and involve debenzy-
lation with formation of polyacylazaisowurtzitane intermediates:
a) T. Kodama, M. Tojo, M. Ikeda, US-6472525, 2002; b) A. J. Sand-
erson, K. Warner, R. B. Wardle, US-639130, 2002; c) R. B. Wardle,
J. C. Hinshaw, US-6147209, 2000; d) K. H. Chung, H. S. Kil, I. Y.
Choi, C. K. Chu, I. M. Lee, J. Heterocycl. Chem. 2000, 37, 1647–
1649.
[26] G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal
Structures, University of Gçttingen, Gçttingen (Germany), 1996.
Received: August 23, 2005
Published online: February 2, 2006
3344
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 3339 – 3344