2304 Organometallics, Vol. 20, No. 11, 2001
Yue and Stephan
Hz), 17.2(s, CH3). Anal. Calcd for C21H31NP2: C, 70.17; H, 8.69;
N, 3.90. Found: C, 69.63; H, 8.37; N, 3.68. 2: Yield: 87% pale
yellow crystalline solid. 31P{1H} NMR (C6D6): 47.9(d, t-Bu3P,
Sch em e 1
| J P-P| ) 62 Hz), 40.8(d, PPh2, | J P-P| ) 62 Hz). 1H NMR
(C6D6): 8.01(m, 4H, m-Ar, |J H-H| ) 7 Hz), 7.23(m, 4H, o-Ar,
|J H-H| ) 8 Hz), 7.05(m, 2H, p-Ar, |J H-H| ) 7 Hz), 1.24(d, 27H,
CH3, |J P-H| ) 13 Hz). 13C{1H} NMR (C6D6): 151.7(d, ipso-Ar,
2
2
2
|12J P-C| ) 20 Hz), 130.4(d, o-Ar, | J P-C| ) 22 Hz), 128.4(d,
3
m-Ar, | J P-C| ) 7 Hz), 127.7(s, p-Ar), 41.6(d, C, |J P-C| ) 49
Hz), 30.3(s, CH3). Anal. Calcd for C24H37NP2: C, 71.79; H, 9.29;
N, 3.49. Found: C, 71.87; H, 9.37; N, 3.34.
strategy to sterically demanding phosphinimide ligands.
Herein we describe the synthesis of phosphinimide-
phosphinimide ligands and the corresponding titanium
complexes. The utility of these ligands and this strategy
in the design of new polymerization catalysts is as-
sessed, and the implications are considered.
Syn th esis of Me3AlP P h 2(NP R3) (R ) i-P r 3, t-Bu 4).
Both compounds were prepared in a similar manner; thus one
procedure is described. A 2.5 M hexane solution of AlMe3 (0.42
mL; 0.84 mmol) was added to a clear benzene solution (6 mL)
of 1 (100 mg; 0.28 mmol). The solution mixture was allowed
to stir at room temperature overnight. Evaporation of the
solvent gave a white solid. The solid was then washed with (2
× 2 mL) hexane and subsequently dried under vacuum. 3:
Yield: 90% white crystalline solid. 31P{1H} NMR (C6D6): 39.7,
Exp er im en ta l Section
Gen er a l Da ta All preparations were done under an atmos-
phere of dry, O2-free N2 employing both Schlenk line tech-
niques and an Innovative Technologies or Vacuum Atmos-
pheres inert atmosphere glovebox. Solvents were purified
employing a Grubb’s type column system manufactured by
Innovative Technology. All organic reagents were purified by
1
26.3. H NMR (C6D6): 7.77(m, 4H, o-Ar, |J H-H| ) 8 Hz), 7.16-
(m, 4H, m-Ar, |J H-H| ) 7 Hz), 7.09(m, 2H, p-Ar, |J H-H| ) 7
Hz), 1.80(m, 3H, CH, |J H-H| ) 7 Hz), 0.86(quart, 18H, CH3,
|J H-H| ) 7 Hz). 13C{1H} NMR (C6D6): 142.0(d, ipso-Ar, |J P-C
|
2
) 30 Hz), 132.5(d, o-Ar, | J P-C| ) 14 Hz), 130.0(s, p-Ar), 128.5-
3
(d, m-Ar, | J P-C| ) 9 Hz), 26.3(d, CH, |J P-C| ) 61 Hz), 17.4(s,
conventional methods. H, 13C, 11B, 19F, and 31P NMR spectra
1
CH3), -6.4(s, CH3). Anal. Calcd for C24H40AlNP2: C, 63.78; H,
10.19; N, 3.54. Found: C, 63.24; H, 9.96; N, 3.12.
were recorded on a Bruker Avance-300 and/or 500. 1H and 13C
NMR spectra are referenced to SiMe4. 31P NMR, 11B NMR, and
19F NMR spectra were recorded on a Bruker Avance-300 and
are referenced to 85% H3PO4, NaBH4/H2O, and F3CCOOH,
respectively. Guelph Chemical Laboratories, Guelph, Ontario,
performed combustion analyses.
4: Yield: 98% white crystalline solid. 31P{1H} NMR
2
2
(C6D6): 45.0(d, t-Bu3P, | J P-P| ) 26 Hz), 28.1(d, PPh2, | J P-P
|
1
) 26 Hz). H NMR (C6D6): 7.84(m, 4H, o-Ar, |J H-H| ) 8 Hz),
7.16(m, 4H, m-Ar, |J H-H| ) 6 Hz), 7.08(m, 2H, p-Ar, |J H-H| )
7 Hz), 1.06(m, 27H, CH, |J H-H| ) 14 Hz), -0.15(s, 9H, CH3).
13C{1H} NMR (C6D6): 141.9(d, ipso-Ar, |J P-C| ) 29 Hz), 133.4-
Syn th esis of P P h 2(NP R3) (R ) i-P r 1, t-Bu 2). Both
compounds were prepared in a similar manner; thus one
procedure is described. Ph2PCl (2.44 g; 0.01 mol) was added
dropwise to a clear orange benzene solution (100 mL) of i-Pr3-
PNLi (2.00 g; 0.01 mol). A white precipitate was formed. The
solution became yellow after 4 h of stirring, and evaporation
of the solvent under vacuum gave a pale yellow solid. The
residue was extracted with 100 mL of hexane. Filtration and
concentration of the solvent gave 1 in 80% yield. 1: 31P{1H}
2
3
(d, o-Ar, | J P-C| ) 14 Hz), 130.0(s, p-Ar), 128.4(d, m-Ar, | J P-C
|
) 8 Hz), 41.0 (d, C, |J P-C| ) 51 Hz), 29.9 (s, CH3), -5.9(s, CH3).
Anal. Calcd for C27H46AlNP2: C, 68.47; H, 9.79; N, 2.96.
Found: C, 68.80; H, 10.28; N, 2.99.
Syn th esis of (C6F 5)3B(P P h 2(NP i-P r 3)), 5. A benzene
solution of B(C6F5)3 (140 mg; 0.28 mmol) was added to a clear
benzene solution (5 mL) of 1 (100 mg; 0.28 mmol). The solution
mixture was allowed to stir at room temperature for 2 h.
Evaporation of the solvent gave a white solid. The solid was
then washed with (2 × 2 mL) hexane and subsequently dried
under vacuum. 5: Yield: 87% white solid. 31P{1H} NMR
2
NMR (C6D6): 42.4(d, i-Pr3P, | J P-P| ) 80 Hz), 38.9(d, PPh2,
2
1
| J P-P| ) 80 Hz). H NMR (C6D6): 8.02(m, 4H, o-Ar, |J H-H| )
7 Hz), 7.26(m, 4H, m-Ar, |J H-H| ) 7 Hz), 7.08(m, 2H, p-Ar,
|J H-H| ) 7 Hz), 1.94(m, 3H, CH, |J H-H| ) 4 Hz), 0.95(quart,
18H, CH3, |J H-H| ) 7 Hz). 13C{1H} NMR (C6D6): 151.2(d, ipso-
2
(C6D6): 39.8(d, i-Pr3P, |J P-P| ) 59 Hz), 33.2(v br, PPh2). 1H
NMR (C6D6): 7.56(m, 4H, o-Ar, |J H-H| ) 8 Hz), 6.97(m, 2H,
p-Ar, |J H-H| ) 8 Hz), 6.87(m, 4H, m-Ar, |J H-H| ) 8 Hz), 1.59-
(m, 3H, CH, |J H-H| ) 7 Hz), 0.52(quart, 18H, CH3, |J H-H| ) 7
Hz). 11B NMR (C6D6): 34.8. 19F NMR (C6D6): -47.9(d, 6F,
o-C6F5, |J F-F| ) 22 Hz), -81.0(t, 6F, m-C6F5, |J F-F| ) 21 Hz),
-87.5(m, 3F, p-C6F5, |J F-F| ) 23 Hz). 13C{1H} NMR (C6D6):
151.9, 142.0, 136.2, 135.5, 133.0, 131.2, 128.7(d, |J P-C| ) 15
Hz), 127.8(d, |J P-C| ) 15 Hz), 27.0(d, |J P-C| 12 ) 61 Hz), 16.7.
Anal. Calcd for C39H49BF15NP2: C, 53.75; H, 3.59; N, 1.61.
Found: C, 53.21; H, 3.45; N, 1.42.
2
Ar, |J P-C| ) 27 Hz), 130.4(d, o-Ar, | J P-C| ) 22 Hz), 128.1(d,
3
m-Ar, | J P-C| ) 6 Hz), 127.5(s, p-Ar), 25.5(d, CH, |J P-C| ) 59
(30) Rogers, J . S.; Lachicotte, R. J .; Bazan, G. C. J . Am. Chem. Soc.
1999, 121, 1288-1298.
(31) Nomura, K.; Naga, N.; Miki, M.; Yanagi, K.; Imai, A. Organo-
metallics 1998, 17, 2152-2154.
(32) Warren, T. H.; Schrock, R. R.; Davis, W. M. Organometallics
1998, 17, 308-321.
(33) Rodriguez, G.; Bazan, G. C. J . Am. Chem. Soc. 1997, 119, 343-
352.
(34) Sun, Y.; Piers, W. E.; Yap, G. P. A. Organometallics 1997, 16,
2509-2513.
Syn th esis of Me3SiNP P h 2(NP R3) (R ) i-P r 6, t-Bu 7).
Both compounds were prepared in a similar manner; thus one
procedure is described. Me3SiN3 (129 mg; 1.12 mmol) was
added dropwise to 335 mg (0.93 mmol) of white crystalline 1.
Gas evolution was observed. The mixture became an orange
oil after refluxing overnight. The orange oil was extracted with
(2 × 5 mL) hexane, and the hexane was filtered and removed
under vacuum. 6: Yield: 94% white solid. 31P{1H} NMR
(35) Fokken, S.; Spaniol, T. P.; Kang, H.-C.; Massa, W.; Okuda, J .
Organometallics 1996, 15, 5069-5072.
(36) Sung, R. C. W.; Courtenay, S.; McGarvey, B. R.; Stephan, D.
W. Inorg. Chem. 2000, 39, 2542-2546.
(37) Kickham, J . E.; Guerin, F.; Stewart, J . C.; Stephan, D. W.
Angew. Chem. 2000, 112, 1354-1356.
(38) Gue´rin, F.; Stewart, J . C.; Beddie, C.; Stephan, D. W. Organo-
metallics 2000.
(39) Guerin, F.; Stephan, D. W. Angew. Chem. Int. Ed. 2000, 39,
1298-1301.
2
2
(C6D6): 41.4(d, i-Pr3P, | J P-P| ) 8 Hz), -6.1(d, PPh2, | J P-P| )
9 Hz). 1H NMR (C6D6): δ 8.10(m, 4H, o-Ar, |J H-H| ) 8 Hz),
7.20(m, 4H, m-Ar, |J H-H| ) 8 Hz), 7.08(m, 2H, p-Ar, |J H-H| )
7 Hz), 2.06(m, 3H, CH, |J H-H| ) 7 Hz), 0.94(m, 18H, CH3,
|J H-H| ) 8 Hz), 0.41(s, 9H, CH3). 13C{1H} NMR (C6D6): 144.3-
(40) Stephan, D. W.; Stewart, J . C.; Guerin, F.; Spence, R. E. v.;
Xu, W.; Harrison, D. G. Organometallics 1999, 17, 1116-1118.
(41) Stephan, D. W.; Guerin, F.; Spence, R. E. v.; Koch, L.; Gao, X.;
Brown, S. J .; Swabey, J . W.; Wang, Q.; Xu, W.; Zoricak, P.; Harrison,
D. G. Organometallics 1999, 17, 2046-2048.
(42) Carraz, C.; Stephan, D. W. Organometallics 2000, 19, 3791-
3796.
2
(d, ipso-Ar, |J P-C| ) 128 Hz), 132.0(d, o-Ar, | J P-C| ) 10 Hz),
3
129.4(p-Ar), 128.0(d, m-Ar, | J P-C| ) 12 Hz), 25.5(d, CH, |J P-C
|