´
´
´
G. Garcıa-Gomez, J. M. Moreto
FULL PAPER
18.9 Hz, 1 H), 2.58 (ddd, J ϭ 1.5, 7.8, 13.2 Hz, 1 H), 2.77 (m, 1
from
(2E)-4-bromobut-2-enyl prop-2-ynyl ether (0.41 g,
H), 2.81 (ddd, J ϭ 1.5, 8.4, 13.8 Hz, 1 H), 3.43 (m, 1 H), 3.86 (s, 2.18 mmol), Ni(COD)2 (0.60 g, 2.18 mmol) in toluene (20 mL), this
3 H), 4.15 (q, J ϭ 7.2 Hz, 2 H), 4.21 (q, J ϭ 7.2 Hz, 2 H), 7.20 (d,
compound was isolated after flash chromatography (hexane/
J ϭ 2.4 Hz, 1 H). Ϫ 13C NMR (75 MHz, CDCl3): δ ϭ 13.9 (CH3), EtOAc, 5:1) as a yellow oil (0.307 g, 84%). Ϫ IR (film): ν˜ ϭ 1720,
1
36.0 (CH2), 39.7 (CH2), 41.1 (CH), 41.6 (CH2), 44.4 (CH), 61.4
1672, 1434 cmϪ1. Ϫ H NMR (300 MHz, CDCl3): δ ϭ 3.71 (s, 3
(CH2), 61.9 (CH3), 62.0 (CH2), 119.7 (C), 156.5 (CH), 171.4 (C), H, CH3), 3.90 (dd, J ϭ 5.7, 9.0 Hz, 1 H, CH2O), 4.01 (dd, J ϭ 2.1
171.8 (C), 206.9 (C).
9.0 Hz, 1 H, CH2O), 4.18 (m, 1 H, CH), 4.32 (dt, J ϭ 1.5, 15.3 Hz,
1 H, CH2O), 4.55 (dt, J ϭ 1.5, 15.3 Hz, 1 H, CH2O), 5.09 (dt, J ϭ
1.5, 10.2 Hz, 1 H, ϭCH), 5.17 (dt, J ϭ 1.5, 17.1 Hz, 1 H, ϭCH),
5.83 (q, J ϭ 1.8 Hz, 1 H, ϭCH), 5.89 (ddd, J ϭ 6.9, 10.2, 17.1 Hz,
1 H, ϭCH). Ϫ 13C NMR (75 MHz, CDCl3): δ ϭ 46.2 (CH), 51.2
(CH3), 71.7 (CH2), 74.0 (CH2), 111.2 (CH2), 115.4 (CH2), 136.1
(CH), 162.7 (C), 165.8 (C).
Diethyl 2-Allyl-2-[(2E)-4,4-dimethoxybut-2-enyl]malonate (5n):
98 mg, 8%. Ϫ 1H NMR (300 MHz, CDCl3): δ ϭ 1.23 (t, J ϭ
6.8 Hz, 6 H), 2.64 (m, 4 H), 3.27 (s, 6 H), 4.21 (q, J ϭ 6.8 Hz, 4
H), 4.68 (d, J ϭ 4.8 Hz, 1 H), 5.13 (m, 2 H), 5.66 (m, 3 H). Ϫ 13C
NMR (75 MHz): δ ϭ 13.8 (CH3), 13.9 (CH3), 34.9 (CH2), 36.7
(CH2), 52.5 (CH3), 57.1 (C), 61.3 (CH2), 61.2 (CH2), 102.4 (CH),
119.2 (CH2), 128.6 (CH), 131.0 (CH), 131.9 (CH), 170.4 (C).
Acknowledgments
We thank DGESIC and Generalitat de Catalunya (Project
PB97Ϫ0407-C05Ϫ05 and Grant 5GR95Ϫ0439) for financial sup-
port. G. G.-G. also thanks CIRIT for a fellowship. We thank J.
Roget and BASF Espan˜ola S.A. for support.
Diethyl
3-(2,2-Dimethoxyethyl)-4-methylcyclopentane-1,1-dicarb-
oxylate (11n): As a result of applying the general procedure, from
2n (0.51 g, 1.89 mmol), Ni(COD)2 (0.52 g, 1.89 mmol) and trifluo-
roacetic acid (0.22 g, 1.89 mmol), 11n was obtained after flash
chromatography (hexane/EtOAc, 9:1) as a yellow oil (0.311 g, 52%).
[1]
[1a]
For leading references see:
B. M. Trost, I. Fleming, M. F.
Semmelhack, Comprehensive Organic Synthesis Pergamon
[1b]
Press, New York, 1991, vol. 4. Ϫ
L. S. Hegedus, Transition
Metals in the Synthesis of Complex Organic Molecules, Univer-
[1c]
sity Science Books, New York 1994. ؊
L. Haughton, J. M.
Ϫ
1H NMR (300 MHz, CDCl3): δ ϭ 0.98 (d, J ϭ 5.7 Hz, 3 H),
J. Williams, J. Chem. Soc., Perkin Trans.1 1999, 2645Ϫ2658. Ϫ
1.22 (t, J ϭ 7.2 Hz, 6 H), 1.53 (m, 2 H), 1.72 (d, J ϭ 13.2 Hz, 1
H), 1.80 (dd, J ϭ 4.2, 13.5 Hz, 1 H), 1.85 (m, 1 H), 1.90 (dd, J ϭ
3.0, 7.2 Hz, 1 H), 2.44 (dd, J ϭ 6.0, 13.2 Hz, 1 H), 2.55 (dd, J ϭ
6.9, 13.5 Hz, 1 H), 3.31 (s, 3 H), 3.33 (s, 3 H), 4.17 (q, J ϭ 7.2 Hz,
4 H), 4.40 (dd, J ϭ 4.5, 7.2 Hz, 1 H). Ϫ 13C NMR (75 MHz,
CDCl3): δ ϭ 14.0 (CH3), 17.5 (CH3), 36.3 (CH2), 40.2 (CH2), 40.5
(CH2), 42.2 (CH), 42.7 (CH), 53.0 (CH3), 56.9 (C), 61.2 (CH2),
61.3 (CH2), 103.7 (CH), 177.7 (C), 177.8 (C). Ϫ MS (40 eV, EI);
m/z (%): 285 (7) [M Ϫ OCH3]ϩ, 239 (26), 165 (12), 137 (15), 107
(14), 75 (100).
[1d]
A. C. Comely, S. E. Gibson, S. Sur, J. Chem. Soc., Perkin
Trans. 1 2000, 109Ϫ124.
[2] [2a]
O. Geis, H. G. Schmalz, Angew. Chem. Int. Engl. 1998, 37,
911Ϫ915. Ϫ [2b] N. E. Schore in Comprehensive Organometallic
Chemistry II, vol. 12 (Eds.: G. Wilkinson, F. G. A. Stone, E.
W. Abel), Pergamon, Oxford, 1995, p. 703Ϫ739.
[3] [3a]
´
F. Camps, J. Coll, J. M. Moreto, J. Torras, J. Org. Chem.
1989, 54, 1969Ϫ1978. Ϫ [3b] F. Camps, J. M. Moreto, Ll. Pages,
´
`
Tetrahedron 1992, 48, 3147Ϫ3162. Ϫ [3c] Ll. Pages, A. Llebaria,
`
´
F. Camps, E. Molins, C. Miravitlles, J. M. Moreto, J. Am.
[3d]
Chem. Soc. 1992, 114, 10449Ϫ10461. Ϫ
F. Vilaseca, Ll.
`
´
Pages, J. M. Villar, A. Llebaria, A. Delgado, J. M. Moreto, J.
Orgamomet. Chem. 1998, 551, 107Ϫ115.
[4]
[4a] G. Garcia-Gomez, X. Camps, A. Jauma Cayuela, J. M. Mo-
[4b]
´
reto, Inorg. Chim. Acta 1999, 296, 94Ϫ102. Ϫ
G. Garcia-
´
Gomez, J. M. Moreto, J. Am. Chem. Soc. 1999, 121, 878Ϫ879.
[5]
[6]
´
F. Camps, J. Coll, J. M. Moreto, J. Torras, Tetrahedron Lett.
1987, 28, 4745Ϫ4748
Ni0 complexes are active alkyne polymerisation catalysts; see:
P. W. Jolly, G. Wilke, The Organic Chemistry of Nickel Aca-
demic Press, New York, 1975, vol. II, chapter II.
Additional evidence for the stereochemistry of the enol ethers 3
reported here was provided by the X-ray crystal diffractometry
resolution of cycloadduct 3l.
We think that under the present conditions these kinds of prod-
ucts actually arise from a methoxy group attack onto the π-
allyl ligand.
(2E)-N,N-Diallyl-4,4-dimethoxybut-2-en-1-ylamine (5p): As a result
of applying the general procedure, from a 1:1 mixture of 1p/2p
(0.624 g, 1.89 mmol), Ni(COD)2 (0.52 g, 1.89 mmol) and trimethyl-
silyl chloride (0.23 g, 2.08 mmol), 5p was isolated after flash chro-
matography (hexane/EtOAc, 5:1) as a yellow oil (40 mg, 10%). Ϫ
1H NMR (300 MHz, CDCl3): δ ϭ 3.10 (m, 6 H), 3.32 (s, 3 H), 3.38
(s, 3 H), 4.16 (d, J ϭ 5.4 Hz, 1 H), 5.18 (m, 4 H), 5.80 (m, 4 H).
[7]
[8]
Ϫ
13C NMR (75 MHz): δ ϭ 52.8 (CH2), 56.2(CH2), 57.6(CH2),
[9] [9a]
W. Oppolzer, M. Bedoya-Zurita, C. Y. Switzer, Tetrahedron
[9b]
102.3 (CH), 118.7(CH2), 127.7(CH), 130.0 (CH), 134.2 (CH).
Lett. 1988, 29, 6433Ϫ6436. Ϫ
W. Oppolzer, Angew. Chem.
Int. Ed. Engl. 1989, 28, 38Ϫ52.
[10]
[11]
The dihedral angle formed between the π-allyl plane and the
equatorial is found always to be larger than 90° (usually around
106° and even attaining values of 120° in particular cases). See
ref.[6], vol. I, chapter VI.
Although 8f was produced as the major product in the crude
product, its isolation after purification turned out to be im-
Methyl (2E)-[4-Vinyldihydrofuran-3(2H)-ylidene]acetate: See foot-
note [a] in Table 1. As a result of applying the general procedure,
1368
Eur. J. Org. Chem. 2001, 1359Ϫ1369