14
Tetrahedron
ACCEPTED MANUSCRIPT
Antibiot. 1998, 51, 282-288; (g) Kondo, K.; Eguchi, T.; Kakinuma, K. J.
Antibiot. 1998, 51, 288-295.
28. Rohbogner, C. J.; Wagner, A. J.; Clososki, G. C.; Knochel, P. Org. Synth.
2009, 86, 374-384.
8. For synthesis of the cervinomycins, see: (a) Kelly, T. R.; Jagoe, C. T.; Li,
Q. J. Am. Chem. Soc. 1989, 11, 4522-4524. (b) Rao, A. V. R.; Yadav, J.
S.; Reddy, K. K.; Upender, V. Tetrahedron Lett. 1991, 32, 5199-5202. (c)
Yadav, J. S. Pure Appl. Chem. 1993, 65, 1349-1356. (d) Mehta, G.; Shah,
S. R.; Venkateswarlu, Y. Tetrahedron 1994, 50, 11729-11742.
9. For synthesis of the kibdelones, see: (a) Butler, J. R.; Wang, C.; Bian, J.;
Ready, J. M. J. Am. Chem. Soc. 2011, 133, 9956-9959. (b) Sloman, D. L.;
Bacon, J. W.; Porco, Jr., J. A. J. Am. Chem. Soc. 2011, 133, 9952-9955. (c)
Winter, D. K.; Endoma-Arias, M. A.; Hudlicky, T.; Beutler, J. A.; Porco,
Jr., J. A. J. Org. Chem. 2013, 78, 7617-7626. (d) Rujirawanich, J.; Kim,
S.; Ma, A.-J.; Butler, J. R.; Wang, Y.; Wang, C.; Rosen, M.; Posner, B.;
Nijhawan, D.; Ready, J. M. J. Am. Chem. Soc. 2016, 138, 10561-10570.
Partial work: (e) Sloman, D. L.; Mitasev, B.; Scully, S. S.; Beutler, J. A.;
Porco Jr., J. A. Angew. Chem. Int. Ed. 2011, 50, 2511-2515. (f) Endoma-
Arias, M.A.; Hudlicky, T. Tetrahedron Lett. 2011, 52, 6632-6634.
10. (a) Yang, J.; Knueppel, D,; Cheng, B.; Mans, D.; Martin S. F. Org. Lett.
2015, 17, 114-117. (b) Knueppel, D.; Yang, J.; Cheng, B.; Mans, D.;
Martin, S. F. Tetrahedron 2015, 71, 5741-5757.
11. For synthetic work on other polycyclic xanthones, see: (a) Duthaler, R. O.;
Wegmann, U. H.-U. Helv. Chim. Acta. 1984, 67, 1755-1766. (b) Duthaler,
R. O.; Scherrer, V. Helv. Chim. Acta. 1984, 67, 1767-1775. (c) Duthaler,
R. O.; Mathies, P.; Petter, W.; Heuberger, C.; Scherrer, V. Helv. Chim.
Acta. 1984, 67, 1217-1221. (d) Duthaler, R. O.; Heuberger, C.; Wegmann,
U. H.-U.; Scherrer, V. Chimia. 1985, 39, 174-182. (e) Walker, E. R.;
Leung, S. Y.; Barrett, A. G. M. Tetrahedron Lett. 2005, 46, 6537-6540. (f)
Masuo, R.; Ohmori, K.; Hintermann, L.; Yoshida, S.; Suzuki, K. Angew.
Chem. Int. Ed. 2009, 48, 3462-3465. (g) Wang, Y.; Wang, C.; Butler, J.
R.; Ready, J. M. Angew. Chem. Int. Ed. 2013, 52, 10796-10799.
12. Blumberg, S.; Martin, S. F. Org. Lett. 2017, 19, 790-793.
13. (a) Nichols, A. L.; Zhang, P.; Martin, S. F. Org. Lett. 2011, 13, 4696-4699.
(b) Nichols, A. L.; Zhang, P.; Martin, S. F. Tetrahedron. 2012, 68, 7591-
7597.
29. Blumberg, S.; Martin, S. F. Tetrahedron Lett. 2015, 56, 3674-3678.
30. Musch, P. W.; Remenyi, C.; Helten, H.; Engels, B. J. Am. Chem. Soc.
2002, 124, 1823-1828.
31. Goncalves, T. P.; Mohamed, M.; Whitby, R. J.; Sneddon, H. F.;
Harrowven, D. C. Angew. Chem. Int. Ed. 2015, 54, 4531-4534.
32. (a) Huang, L.-H.; Ma, Y.-C.; Zhang, C.; Wang, Q.; Zou, X.-N.; Lou, J.-D.
Synthetic Commun. 2012, 42, 3377-3382; (b) Gritter, R. J.; Dupre, G. D.;
Wallace, T. J. Nature. 1964, 202, 179-181; (c) Nammalwar, B.;
Fortenberry, C.; Bunce, R. A.; Lageshetty, S. K.; Ausman, K. D.
Tetrahedron Lett. 2013, 54, 2010-2013.
33. For a review, see: Fatiadi, A. J. Synthesis 1976, 2, 65-104.
34. Performing the reaction at 0 ºC provided 8 in 35% yield along with several
partially oxidized intermediates, which if isolated and resubjected to the
reaction conditions gave 8 in 50% overall yield.
35. (a) Nakajima, N.; Abe, R.; Yonemitsu, O. Chem. Pharm. Bull. 1988, 36,
4244-4247; (b) Johansson, R.; Samuelsson, B J. Chem. Soc., Perkin.
Trans. 1. 1984, 2371-2374.
36. Tangdenpaisal, K.; Sualek, S.; Ruchirawat, S.; Ploypradith, P.
Tetrahedron. 2009, 65, 4316-4325.
37. For examples of reduction of polycyclic aromatic compounds in the
context of total synthesis, see: (a) Asplund, M. C.; Castle, S. L. J. Org.
Chem. 2009, 74, 1187-1199; (b) Zhao, P; Beaudry, C. M.; Angew. Chem.
Int. Ed. 2014, 53, 10500-10503.
38. Liu, L.; Hu, J.; Wang, X.-C.; Zhong, M.-J.; Liu, X.-Y.; Yang, S.-D.;
Liang, Y.-M. Tetrahedron 2012, 68, 5391-5395; (b) Kavala, V.; Wang, C.-
C.; Barange, D. K.; Kuo, C.-W.; Lei, P.-M.; Yao, C.-F. J. Org. Chem.
2012, 77, 5022-5029.
39. (a) Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1977, 42, 4155-4157; (b)
Lewis, C. N.; Spargo, P. L.; Staunton, J. Synthesis 1986, 944-946.
40. (a) Thi, T. P.; Nhat, T. G. L.; Hanh, T. N.; Quang, T. L.; The, C. P.; Thi,
T. A. D.; Nguyen, H. T.; Nguyen, T. H.; Thi, P. H.; Nguyen, T. V. Bioorg.
Med. Chem. Lett. 2016, 26, 3652-3657; (b) Mallampudi, N. A.; Reddy, G.
S.; Maity, S.; Mohapatra, D. K. Org. Lett. 2017, 19, 2074-2077.
41. Munday, R. H.; Martinelli, J. R. Buchwald, S. L. J. Am. Chem. Soc. 2008,
130, 2754-2755.
14. For an example of a similar condensation, see: Hosokawa, S.; Fumiyama,
H.; Fukuda, H.; Fukuda, T.; Seki, M.; Tatsuta, K. Tetrahedron Lett. 2007,
48, 7305-7308.
15. (a) Karlsson, J. O.; Nguyen, N. V.; Foland, L. D.; Moore, H. W. J. Am.
Chem. Soc. 1985, 127, 3392-3393. (b) Foland, L. D.; Karlsson, J. O.; Perri,
S. T.; Schwabe, R.; Xu, S. L.; Patil, S.; Moore, H. W. J. Am. Chem. Soc.
1989, 111, 975-989.
16. Gayo, L. M.; Winters, M. P.; Moore, H. W. J. Org. Chem. 1992, 57, 6896-
6899.
17. Plourde, G. L.; Spaetzel, R. R. Molecules. 2002, 7, 697-705.
18. (a) Pearson. D. E.; Wysong, R. D.; Breder, C. V. J. Org. Chem. 1967, 32,
2358-2360. (b) Fujisaki, S., Eguchi, H., Omura, A., Okamoto, A., Nishida,
A. Bull. Chem. Soc. Jpn. 1993, 66, 1576-1579.
19. For bromination of vanillin derivatives at the 5-position, see: (a) Sarma, J.
A. R. P.; Nagaraju, A.; Majumdar, K. K.; Samuel, P. M.; Das, I.; Roy, S.;
McGhie, A. J. J. Chem. Soc., Perkin Trans. 2. 2000, 6, 1119-1123; (b)
Bailey, K. L.; Molinski, T. F. Tetrahedron Lett. 2002, 43, 9657-9661. For
bromination of vanillin derivatives at the 2-position, See: (c) Raiford, L.
C.; Milbery, J. E. J. Am. Chem. Soc. 1934, 56, 2727-2729; (d) Raiford, L.
C.; Ravely, M. F. J. Org. Chem. 1940, 5, 204-211; (e) Wunsch, B.;
Nerdinger, S. Acrchiv. der Pharmazie. 1995, 328, 301-305.
20. We evaluated other bromine sources such as 2,4,4,6-tetrabromo-2,5-
cyclohexadienone (TBCO) and Br2, but NBS gave the best results.
21. Turnbull, P.; Moore, H. W. J. Org. Chem. 1995, 60, 3274-3275.
22. Bailey, W. F.; Luderer, M. R.; Jordan, K. P. J. Org. Chem. 2006, 71, 2825-
2828.
23. For the effect of phenol additives on olefin metathesis, see: Forman, G. S.;
McConnell, A. E.; Tooze, R. P.; Janse van Rensburg, W.; Meyer, W. H.;
Kirk, M. M.; Dwyer, C. L.; Serfontein, D. W. Organometallics 2005, 24,
4528-4542.
42. Anionic palladium complexes are thought to preferentially insert between
the
Csp2-OTf bond over the Csp2-Br bond because of the greater
electrostatic polarization in the former. For mechanistic studies of this
phenomenon, see: (a) Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33,
314-321; (b) Roy, A. H.; Hartwig, J F. Organometallics 2004, 23, 194-
202; For recent examples, see: (c) Proutiere, F.; Schoenebeck, F. Angew.
Chem. Int. Ed. 2011, 50, 8192-8195; (d) Shen, C.; Wei, Z.; Jiao, H.; Wu,
X.-F. Chem. Eur. J. 2017, 23, 13262-13275.
43. (a) Rutherford, J. L.; Rainka, M. P.; Buchwald, S. L. J. Am. Chem. Soc.
2002, 124, 15168-15169; (b) Chobanian, H. R.; Liu, P.; Chioda, M. D.;
Guo, Y.; Lin, L. S. Tetrahedron Lett. 2007, 48, 1213-1216; (c) Fu, W. C.;
So, C. M.; Chow, W. K.; Yuen, O. Y.; Kwong, F. Y. Org. Lett. 2015, 17,
4612-4615; (d) Hesp, K. D.; Lundgren, R. J.; Stradiotto, M. J. Am. Chem.
Soc. 2011, 133, 5194-5197; (e) We also investigated Migata’s conditions,
but they gave butylated byproducts. See: Kosugi, M.; Hagiwara, I.;
Sumiya, T.; Migita, T. Bull. Chem. Soc. Jpn. 1984, 57, 242-246.
44. Lewis, C. N.; Spargo, P. L.; Staunton, J. Synthesis 1986, 11, 944-946.
45. Casnati, A.; Maggi, R.; Maestri, G.; Della Ca’, N.; Motti, E. J. Org. Chem.
2017, 82, 8296-8303.
46. Martin, S. F.; Dwyer, M. P.; Lynch, C. L. Tetrahedron Lett. 1998, 39,
1517-1520
47. Although amido-ate complexes have been previously utilized to convert
esters into amides, we believe this is the first example using LiAlMe4. See:
Sim, T. B.; Yoon, M. N. Synlett 1994, 827-828.
48. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers,
F. J. Organometallics 1996, 15, 1518-1520.
49. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
50. Sosa, A. Ann. Chim. 1940, 14, 5-120
24. For the use of DMSO to facilitate removal of Ru, see: Ahn, Y. M.; Yang,
K. L.; Georg, G. I. Org. Lett. 2001, 3, 1411-1413.
51. Chong, J. M.; Shen, L Synth. Commun. 1998, 28, 2801-2806.
25. (a) Lin, Y.-L.; Wu, C.-S.; Lin, S.-W.; Huang, J.-L.; Sun, Y.-S.; Yang, D.-
Y. Bioorg. Med. Chem. 2002, 10, 685-690. (b) Marion, F.; Williams, D.
E.; Patrick, B. O.; Hollander, I.; Mallon, R.; Kim, S. C.; Roll, D. M.;
Feldberg, L. Van Soest, R.; Andersen, R. J. Org. Lett., 2006, 8, 321-324.
26. Imamoto, T.; Suguira, Y.; Takiyama, N. Tetrahedron Lett. 1984, 25, 4233-
4236.
27. Krasovskiy, A.; Kopp, F.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45,
497-500.