J. Am. Chem. Soc. 2001, 123, 5695-5702
5695
Selective Intercalation of Charge Neutral Intercalators into GG and
CG Steps: Implication of HOMO-LUMO Interaction for
Sequence-Selective Drug Intercalation into DNA
Kazuhiko Nakatani,* Takahiro Matsuno, Kaoru Adachi, Shinya Hagihara, and Isao Saito*
Contribution from the Department of Synthetic Chemistry and Biological Chemistry,
Faculty of Engineering, Kyoto UniVersity, CREST, Japan Science and Technology Corporation (JST),
Kyoto 606-8501, Japan
ReceiVed NoVember 14, 2000
Abstract: We have synthesized naphthopyranone epoxide 4 from D-isoascorbic acid together with its three
diastereoisomers. DNA alkylation of ODNs containing 5′XGT3′ and 5′TGY3′ by 4 (11R, 13R), where X and
Y are any nucleotide bases, occurred at all G residues except at G of the 5′TGC3′ sequence. In contrast, the
1
three other diastereoisomers of 4 showed only weak G alkylation activity. Differential H NMR NOE of the
4-G adduct confirmed the G-N7 alkylation at the epoxide carbon of 4 with concomitant SN2 ring opening of
the epoxide. Quantitative HPLC analysis of G alkylation efficiency for 4 showed the order of G alkylation
susceptibility as TGGT ≈ CGT . TGA > AGT > TGT . TGC. The order was fully consistent with those
reported for aflatoxin B1 oxide and kapurimycin A3, suggesting that the sequence selectivity observed for
these DNA alkylating agents is not structure dependent but most likely due to the intrinsic property of DNA
sequences. We found that the order of G alkylation susceptibility obtained for 4 completely matched the
calculated HOMO energy level of G-containing sequences. These results underscore that 4 is a unique molecular
probe for ranking the HOMO level of G-containing sequences by well-known G alkylation chemistry and
suggests that the intercalation of charge neutral intercalators is a HOMO-controlled process.
Introduction
Certain types of intercalators are known to eventually produce
covalent DNA complexes. Aflatoxin B1 oxide (1),10 one of the
most potent environmental mutagens, and kapurimycin A3
(2),11,12 a member of pluramycin antibiotics,13,14 are the
representatives of such DNA-alkylating intercalators (Figure 1).
Both 115-20 and 221-23 alkylate N7 of guanine (G) by an
Intercalation into stacked DNA base pairs is one of the most
fundamental modes of interaction between planar aromatic
molecules and duplex DNAs.1-4 Numerous structures of
DNA-intercalator complexes have been determined by X-ray
and NMR analyses.5,6 Intercalation of these molecules resulted
in a significant change of the DNA conformation being
accompanied by unwinding and elongation of the duplex at the
intercalated base steps.2,3,7 Intercalated molecules are stacked
by flanking 3′ and 5′ base pairs. In DNA-intercalator com-
plexes, a long axis of fused aromatic rings of intercalators may
be parallel to the hydrogen bonds of neighboring base pairs,
whereas an orthogonal orientation of intercalators is also known
as a threading type intercalation.8,9
(10) Busby, W. F., Jr.; Wogan, G. N. In Chemical Carcinogens, 2nd
ed.; Searle, C. E., Ed.; American Chemical Society: Washington, DC, 1984;
pp 945-1136.
(11) Hara, M.; Mokudai, T.; Kobayashi, E.; Gomi, K.; Nakano, H. J.
Antibiot. 1990, 43, 1513-1518.
(12) Yoshida, M.; Hara, M.; Saitoh, Y.; Sano, H. J. Antibiot. 1990, 43,
1519-1523.
(13) Se´quin, U. Fortschr. Chem. Org. Naturst. 1986, 50, 57-122.
(14) Hansen, M. R.; Hurley, L. H. Acc. Chem. Res. 1996, 29, 249-258.
(15) Essigmann, J. M.; Green, C. L.; Croy, R. G.; Fowler, K. W.; Bu¨chi,
G. H.; Wogan, G. N. Cold Spring Harbor Symp. Quant. Biol. 1983, 47,
327-337.
(1) Lerman, S. J. Mol. Biol. 1961, 3, 13-80.
(2) Saenger, W. Principles of Nucleic Acids Structure; Springer-Verlag:
New York, 1983; Chapter 16.
(3) Wilsonm, W. D.; Jones, R. L. In Intercalation Chemistry; Whitting-
ham, M. S., Jacobson, A. J., Eds.; Academic Press: New York, 1982;
Chapter 14.
(16) Essigmann, J. M.; Croy, R. G.; Nadzan, A. M.; Busby, W. F., Jr.;
Reinhold, V. N.; Bu¨chi, G.; Wogan, G. N. Proc. Natl. Acad. Sci. U.S.A.
1977, 74, 1870-1874.
(17) Lin, J. K.; Miller, J. A.; Miller, E. C. Cancer Res. 1977, 37, 4430-
4438.
(4) Wilson, W. D. In Nucleic Acids in Chemistry and Biology; Blackburn,
M., Gait, M., Eds.; IRL Press Ltd.: Oxford, 1990; pp 295-336.
(5) Wilson, W. D.; Li, Y.; Veal, J. M. In AdVances in DNA Sequence
Specific Agents; Hurley, L. H., Ed.; JAI Press Ltd.: Greenwich, 1992; Vol.
1, pp 89-166.
(6) Wang, A. H.-J. In AdVances in DNA Sequence Specific Agents;
Hurley, L. H., Ed.; JAI Press Ltd.: Greenwich, 1996; Vol. 2, pp 59-101.
(7) Waring, M. J. Annu. ReV. Biochem. 1981, 50, 159-192.
(8) Daunomycin: Wan, A. H.-J.; Ughetto, G.; Quigley, G. J.; Rich, A.
Biochemistry 1987, 26, 1152-1163.
(9) Nogalamycin: (a) Liaw, Y. C.; Gao, Y. G.; Robinson, H.; van der
Marel, G. A.; van Boom, J. H.; Wan, A. H.-J. Biochemistry 1989, 28, 9913-
9918. (b) Gao, Y. G.; Liaw, Y. C.; Robinson, H.; Wan, A. H.-J. Biochemistry
1990, 29, 10307-10316.
(18) (a) Muench, K. F.; Misra, R. P.; Humayun, M. Z. Proc. Natl. Acad.
Sci. U.S.A. 1983, 80, 6-10. (b) Misra, R. P.; Muench, K. F.; Humayun, M.
Z. Biochemistry 1983, 22, 3351-3359.
(19) (a) Benasutti, M.; Ejadi, S.; Whitlow, M. D.; Loechler, E. L.
Biochemistry 1988, 27, 472-481. (b) Loechler, E. L.; Teeter, M. M.;
Whitlow, M. D. J. Biomol. Struct. Dyn. 1988, 5, 1237-1257.
(20) Gopalakrishnan, S.; Harris, T. M.; Stone, M. P. Biochemistry 1990,
29, 10438-10448.
(21) Chan, K. L.; Sugiyama, H.; Saito, I. Tetrahedron Lett. 1991, 52,
7719-7722.
(22) Hara, M.; Yoshida, M.; Nakano, H. Biochemistry 1990, 29, 10449-
10455.
(23) Nakatani, K.; Okamoto, A.; Saito, I. Angew. Chem., Int. Ed. Engl.
1997, 36, 2794-2797.
10.1021/ja003956i CCC: $20.00 © 2001 American Chemical Society
Published on Web 05/25/2001