3610
K. Tsunashima et al. / Tetrahedron Letters 42 (2001) 3607–3611
604–606; (d) Brufani, M.; Cellai, L.; Musu, C.; Keller-
Schierlein, W. Helv. Chim. Acta 1972, 55, 2329–2346.
2. Laatsch, H.; Kellner, M.; Lee, Y.-S.; Wolf, G. Z. Natur-
13. In THF, significant decomposition occurred.
14. More than 95% lithiation was confirmed by a D2O
quenching experiment.
forsch. 1994, 49b, 977–980.
15. Recently, we described the usefulness of Bu2Mg as an
additive for the dithiane coupling chemistry. See: (a) Ide,
M.; Yasuda, M.; Nakata, M. Synlett 1998, 936–938; (b)
Ide, M.; Nakata, M. Bull. Chem. Soc. Jpn. 1999, 72,
2491–2499; (c) Ide, M.; Nakata, M. J. Synth. Org. Chem.
Jpn. 2000, 58, 857–868.
3. (a) Akita, H.; Yamada, H.; Matsukura, H.; Nakata, T.;
Oishi, T. Tetrahedron Lett. 1990, 31, 1731–1734; (b)
Akita, H.; Yamada, H.; Matsukura, H.; Nakata, T.;
Oishi, T. Tetrahedron Lett. 1990, 31, 1735–1738.
4. Nakata, M.; Ohashi, J.; Ohsawa, K.; Nishimura, T.;
Kinoshita, M.; Tatsuta, K. Bull. Chem. Soc. Jpn. 1993,
66, 3464–3474.
16. (a) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41,
135–631; (b) Lipshutz, B. H. In Organometallics in Syn-
5. Hoffmann has synthesized the same compound 2. See: (a)
Hoffmann, R. W.; Rolle, U. Tetrahedron Lett. 1994, 35,
4751–4754; (b) Hoffmann, R. W.; Rolle, U.; Go¨ttlich, R.
Liebigs Ann. 1996, 1717–1724.
thesis; Schlosser, M., Ed.; John Wiley
Chichester, 1994; pp. 283–382.
& Sons:
17. Instead of triflate 9, iodide 7 was recovered from the
reaction mixture. This indicates that LiI, which exists in
the reaction mixture, competitively attacks triflate 9. A
separate experiment showed that iodide 7 is less reactive
than triflate 9. In order to prevent this exchange, the
vinyl tributyltin equivalent of 5 was prepared and sub-
jected to the lithiation conditions; however, all efforts
resulted in failure.
18. (a) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93,
2117–2188; (b) Knochel, P.; Perea, J. J. A.; Jones, P.
Tetrahedron 1998, 54, 8275–8319; (c) Erdik, E. Organo-
zinc Reagents in Organic Synthesis; CRC Press: Boca
Raton, FL, 1996; (d) For recent organozincate chemistry,
see: Uchiyama, M.; Kameda, M.; Mishima, O.;
Yokoyama, N.; Koike, M.; Kondo, Y.; Sakamoto, T. J.
Am. Chem. Soc. 1998, 120, 4934–4946 and references
cited therein.
19. For recent examples of the Negishi palladium-catalyzed
cross-coupling19e of alkyl zinc intermediates with vinyl
iodides and triflates for natural product syntheses, see: (a)
Hu, T.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc.
1999, 121, 9229–9230; (b) Hirashima, S.; Aoyagi, S.;
Kibayashi, C. J. Am. Chem. Soc. 1999, 121, 9873–9874;
(c) Smith, III, A. B.; Kaufman, M. D.; Beauchamp, T. J.;
LaMarche, M. J.; Arimoto, H. Org. Lett. 1999, 1, 1823–
1826; (d) Smith, III, A. B.; Beauchamp, T. J.; LaMarche,
M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D.
R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122, 8654–
8664; (e) Negishi, E.; Valente, L. F.; Kobayashi, M. J.
Am. Chem. Soc. 1980, 102, 3298–3299.
20. For recent examples of the Jackson palladium-catalyzed
cross-coupling of amino acid-derived organozinc interme-
diates with vinyl (and aryl) iodides and triflates, see: (a)
Masaki, H.; Mizozoe, T.; Esumi, T.; Iwabuchi, Y.;
Hatakeyama, S. Tetrahedron Lett. 2000, 41, 4801–4804;
(b) Masaki, H.; Maeyama, J.; Kamada, K.; Esumi, T.;
Iwabuchi, Y.; Hatakeyama, S. J. Am. Chem. Soc. 2000,
122, 5216–5217; (c) Dexter, C. S.; Jackson, R. F. W.;
Elliot, J. Tetrahedron 2000, 56, 4539–4540; (d) Pe´rez-
Gonza´lez, M.; Jackson, R. F. W. Chem. Commun. 2000,
2423–2424.
6. For synthetic studies on the upper half, see: Woo, S.;
Keay, B. A. Synlett 1996, 135–137.
7. (a) Nakata, M.; Arai, M.; Tomooka, K.; Ohsawa, N.;
Kinoshita, M. Bull. Chem. Soc. Jpn. 1989, 62, 2618–2635;
(b) Nakata, M.; Akiyama, N.; Kamata, J.; Kojima, K.;
Masuda, H.; Kinoshita, M.; Tatsuta, K. Tetrahedron
1990, 46, 4629–4652; (c) Kinoshita, M.; Nakata, M. J.
Synth. Org. Chem. Jpn. 1986, 44, 206–218; (d) Nakata,
M.; Tatsuta, K. In Studies in Natural Products Chemistry;
Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1993; Vol.
12, pp. 35–62.
8. (a) Nakata, M. J. Synth. Org. Chem. Jpn. 1989, 47,
1146–1157; (b) Nakata, M.; Kadoi, H.; Nishimura, T.;
Ohashi, J.; Ohsawa, K.; Tatsuta, K.; Kinoshita, M. 65th
National Meeting of the Chemical Society of Japan:
Tokyo, March 1993; Abstr. No. 4H1 47.
9. Recently, similar coupling reactions were reported for the
synthetic studies on natural products. See: (a) Hoye, T.
R.; Tennakoon, M. A. Org. Lett. 2000, 2, 1481–1483; (b)
Kadowaki, C.; Chan, P. W. H.; Kadota, I.; Yamamoto,
Y. Tetrahedron Lett. 2000, 41, 5769–5772.
10. Toshima, K.; Jyojima, T.; Yamaguchi, H.; Noguchi, Y.;
Yoshida, T.; Murase, H.; Nakata, M.; Matsumura, S. J.
Org. Chem. 1997, 62, 3271–3284.
11. Satisfactory analytical data (NMR and IR spectra, ele-
mental analyses and/or HRMS, optical rotations) were
obtained for all new compounds.
12. Compounds 6 and 7 were prepared from the known
alcohol i7a by the literature procedure (Classon, B.; Liu,
Z.; Samuelsson, B. J. Org. Chem. 1988, 53, 6126–6130).
Compounds 8 and 9 were prepared from i7a as shown in
Scheme 6.
Br2, Ph2PCl, imidazole,
6
toluene, r.t., 5 min, 93%
I2, Ph2PCl, imidazole,
Me
7
21. Brown, J. M. Angew. Chem., Int. Ed. Engl. 1987, 26,
190–203.
toluene, r.t., 5 min, 91%
TsCl, Et3N, CH2Cl2,
22. The low yield of 13 was due to not only the inertness of
the iodide equivalent of 12, which was derived from 12
and in-situ contaminated LiI, but also the instability of
12.
TrO
OH
8
9
i
r.t., 18 h, 74%
Tf2O, 2,6-lutidine, CH2Cl2,
23. Compound 2: [h]D24 +33.6 (c 2.09, CHCl3) [lit.,3b [h]2D0
+32.7 (c 2.14, CHCl3). lit.,5b [h]D20 +32.8 (c 2.10, CHCl3)].
IR (neat): 3440, 2960, 2930, 2880, 2860, 1470, 1460, 1380,
0 °C, 5 min, 74%
Scheme 6.