8. G. F. Zha et al., Palladium-catalyzed fluorosulfonylvinylation of organic iodides.
Angew. Chem. Int. Ed. Engl. 56, 4849–4852 (2017).
44. A. Warshel, R. P. Bora, Perspective: Defining and quantifying the role of dynamics in
enzyme catalysis. J. Chem. Phys. 144, 180901 (2016).
9. G. Ren, Q. Zheng, H. Wang, Aryl fluorosulfate trapped Staudinger reduction. Org.
Lett. 19, 1582–1585 (2017).
10. C. J. Smedley et al., Sulfur-fluoride exchange (SuFEx)-mediated synthesis of sterically
hindered and electron-deficient secondary and tertiary amides via acyl fluoride in-
termediates. Chemistry 23, 9990–9995 (2017).
11. B. Gao, S. Li, P. Wu, J. E. Moses, K. B. Sharpless, SuFEx chemistry of thionyl tetraflu-
oride (SOF4) with organolithium nucleophiles: Synthesis of sulfonimidoyl fluorides,
sulfoximines, sulfonimidamides, and sulfonimidates. Angew. Chem. Int. Ed. Engl. 57,
1939–1943 (2018).
45. I. T. Suydam, C. D. Snow, V. S. Pande, S. G. Boxer, Electric fields at the active site of an
enzyme: Direct comparison of experiment with theory. Science 313, 200–204 (2006).
46. S. D. Fried, S. G. Boxer, Electric fields and enzyme catalysis. Annu. Rev. Biochem. 86,
387–415 (2017).
47. S. D. Fried, S. Bagchi, S. G. Boxer, Extreme electric fields power catalysis in the active
site of ketosteroid isomerase. Science 346, 1510–1514 (2014).
48. W. G. Lewis et al., Click chemistry in situ: Acetylcholinesterase as a reaction vessel for
the selective assembly of a femtomolar inhibitor from an array of building blocks.
Angew. Chem. Int. Ed. Engl. 41, 1053–1057 (2002).
12. T. Guo et al., A new portal to SuFEx click chemistry: A stable fluorosulfuryl imidazolium
salt emerging as an “F-SO2+” donor of unprecedented reactivity, selectivity, and scope.
Angew. Chem. Int. Ed. Engl. 57, 2605–2610 (2018).
13. J. Dong, K. B. Sharpless, L. Kwisnek, J. S. Oakdale, V. V. Fokin, SuFEx-based synthesis of
polysulfates. Angew. Chem. Int. Ed. Engl. 53, 9466–9470 (2014).
14. J. Yatvin, K. Brooks, J. Locklin, SuFEx on the surface: A flexible platform for post-
polymerization modification of polymer brushes. Angew. Chem. Int. Ed. Engl. 54,
13370–13373 (2015).
15. J. S. Oakdale, L. Kwisnek, V. V. Fokin, Selective and orthogonal post-polymerization
modification using sulfur(VI) fluoride exchange (SuFEx) and copper-catalyzed azide-
alkyne cycloaddition (CuAAC) reactions. Macromolecules 49, 4473–4479 (2016).
16. B. Gao et al., Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the syn-
thesis of polysulfates and polysulfonates. Nat. Chem. 9, 1083–1088 (2017).
17. H. Wang et al., SuFEx-based polysulfonate formation from ethenesulfonyl fluoride-
amine adducts. Angew. Chem. Int. Ed. Engl. 56, 11203–11208 (2017).
18. D. Gahtory et al., Quantitative and orthogonal formation and reactivity of SuFEx
platforms. Chemistry 24, 10550–10556 (2018).
19. K. Brooks et al., SuFEx postpolymerization modification kinetics and reactivity in
polymer brushes. Macromolecules 51, 297–305 (2018).
20. N. P. Grimster et al., Aromatic sulfonyl fluorides covalently kinetically stabilize
transthyretin to prevent amyloidogenesis while affording a fluorescent conjugate. J.
Am. Chem. Soc. 135, 5656–5668 (2013).
49. Y. Bourne et al., Freeze-frame inhibitor captures acetylcholinesterase in a unique
conformation. Proc. Natl. Acad. Sci. U.S.A. 101, 1449–1454 (2004).
50. H. D. Agnew et al., Iterative in situ click chemistry creates antibody-like protein-
capture agents. Angew. Chem. Int. Ed. Engl. 48, 4944–4948 (2009).
51. H. D. Agnew et al., Protein-catalyzed capture agents. Chem. Rev. 10.1021/acs.
chemrev.8b00660. (2019).
52. E. Oueis, C. Sabot, P.-Y. Renard, New insights into the kinetic target-guided synthesis
of protein ligands. Chem. Commun. (Camb.) 51, 12158–12169 (2015).
53. D. Bosc, J. Jakhlal, B. Deprez, R. Deprez-Poulain, Kinetic target-guided synthesis in
drug discovery and chemical biology: A comprehensive facts and figures survey. Fu-
ture Med. Chem. 8, 381–404 (2016).
54. M. Jaegle et al., Protein-templated fragment ligations—From molecular recognition
to drug discovery. Angew. Chem. Int. Ed. Engl. 56, 7358–7378 (2017).
55. H. C. Kolb, M. G. Finn, K. B. Sharpless, Click chemistry: Diverse chemical function from
a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).
56. Q. Zheng, J. Dong, K. B. Sharpless, Ethenesulfonyl fluoride (ESF): An on-water pro-
cedure for the kilogram-scale preparation. J. Org. Chem. 81, 11360–11362 (2016).
57. C. Veryser, J. Demaerel, V. Bieliu Nas, P. Gilles, W. M. De Borggraeve, Ex situ gener-
ation of sulfuryl fluoride for the synthesis of aryl fluorosulfates. Org. Lett. 19, 5244–
5247 (2017).
58. H. Zhou et al., Introduction of a crystalline, shelf-stable reagent for the synthesis of
sulfur(VI) fluorides. Org. Lett. 20, 812–815 (2018).
59. C. J. Smedley et al., 1-Bromoethene-1-sulfonyl fluoride (BESF) is another good con-
nective hub for SuFEx click chemistry. Chem. Commun. (Camb.) 54, 6020–6023 (2018).
60. J. Leng, H. L. Qin, 1-Bromoethene-1-sulfonyl fluoride (1-Br-ESF), a new SuFEx clickable
reagent, and its application for regioselective construction of 5-sulfonylfluoro iso-
xazoles. Chem. Commun. (Camb.) 54, 4477–4480 (2018).
21. A. Baranczak et al., A fluorogenic aryl fluorosulfate for intraorganellar transthyretin
imaging in living cells and in Caenorhabditis elegans. J. Am. Chem. Soc. 137, 7404–
7414 (2015).
22. A. Narayanan, L. H. Jones, Sulfonyl fluorides as privileged warheads in chemical bi-
ology. Chem. Sci. (Camb.) 6, 2650–2659 (2015).
61. P. Birrer et al., Protease-antiprotease imbalance in the lungs of children with cystic
fibrosis. Am. J. Respir. Crit. Care Med. 150, 207–213 (1994).
23. E. C. Hett et al., Rational targeting of active-site tyrosine residues using sulfonyl
fluoride probes. ACS Chem. Biol. 10, 1094–1098 (2015).
62. A. M. Cantin, D. Hartl, M. W. Konstan, J. F. Chmiel, Inflammation in cystic fibrosis lung
disease: Pathogenesis and therapy. J. Cyst. Fibros. 14, 419–430 (2015).
63. S. Gehrig et al., Lack of neutrophil elastase reduces inflammation, mucus hyperse-
cretion, and emphysema, but not mucus obstruction, in mice with cystic fibrosis-like
lung disease. Am. J. Respir. Crit. Care Med. 189, 1082–1092 (2014).
64. R. L. Gibson, J. L. Burns, B. W. Ramsey, Pathophysiology and management of pul-
monary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 168, 918–951 (2003).
65. N. Mayer-Hamblett et al., Association between pulmonary function and sputum
biomarkers in cystic fibrosis. Am. J. Respir. Crit. Care Med. 175, 822–828 (2007).
66. H. Nakamura, K. Yoshimura, N. G. McElvaney, R. G. Crystal, Neutrophil elastase in
respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-
8 gene expression in a human bronchial epithelial cell line. J. Clin. Invest. 89, 1478–
1484 (1992).
67. D. P. Nichols, J. F. Chmiel, Inflammation and its genesis in cystic fibrosis. Pediatr.
Pulmonol. 50 (suppl. 40), S39–S56 (2015).
68. S. D. Sagel, J. F. Chmiel, M. W. Konstan, Sputum biomarkers of inflammation in cystic
fibrosis lung disease. Proc. Am. Thorac. Soc. 4, 406–417 (2007).
69. S. D. Sagel, B. D. Wagner, M. M. Anthony, P. Emmett, E. T. Zemanick, Sputum bio-
markers of inflammation and lung function decline in children with cystic fibrosis.
Am. J. Respir. Crit. Care Med. 186, 857–865 (2012).
70. M. S. Twigg et al., The role of serine proteases and antiproteases in the cystic fibrosis
lung. Mediators Inflamm. 2015, 293053 (2015).
24. W. Chen et al., Arylfluorosulfates inactivate intracellular lipid binding protein(s)
through chemoselective SuFEx reaction with a binding site Tyr residue. J. Am. Chem.
Soc. 138, 7353–7364 (2016).
25. W. Chen et al., Synthesis of sulfotyrosine-containing peptides by incorporating fluo-
rosulfated tyrosine using an Fmoc-based solid-phase strategy. Angew. Chem. Int. Ed.
Engl. 55, 1835–1838 (2016).
26. C. Hoppmann, L. Wang, Proximity-enabled bioreactivity to generate covalent peptide
inhibitors of p53-Mdm4. Chem. Commun. (Camb.) 52, 5140–5143 (2016).
27. O. Fadeyi et al., Chemoselective preparation of clickable aryl sulfonyl fluoride
monomers: A toolbox of highly functionalized intermediates for chemical biology
probe synthesis. ChemBioChem 17, 1925–1930 (2016).
28. S. H. Li et al., Direct introduction of R-SO2F moieties into proteins and protein-
polymer conjugation using SuFEx chemistry. Polymer 99, 7–12 (2016).
29. O. O. Fadeyi et al., Covalent enzyme inhibition through fluorosulfate modification of
a noncatalytic serine residue. ACS Chem. Biol. 12, 2015–2020 (2017).
30. N. Wang et al., Genetically encoding fluorosulfate-L-tyrosine to react with lysine,
histidine, and tyrosine via SuFEx in proteins in vivo. J. Am. Chem. Soc. 140, 4995–4999
(2018).
31. B. Yang et al., Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting
cross-linking mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 115, 11162–11167 (2018).
32. B. Yang et al., Genetically introducing biochemically reactive amino acids dehy-
droalanine and dehydrobutyrine in proteins. J. Am. Chem. Soc. 141, 7698–7703 (2019).
33. D. E. Mortenson et al., “Inverse drug discovery” strategy to identify proteins that are
targeted by latent electrophiles as exemplified by aryl fluorosulfates. J. Am. Chem.
Soc. 140, 200–210 (2018).
34. Z. Liu et al., SuFEx click chemistry enabled late-stage drug functionalization. J. Am.
Chem. Soc. 140, 2919–2925 (2018).
35. C. Suter, “Derivatives of aromatic sulfonic acids. 1. Sulfonyl halides, esters, and an-
hydrides” in The Organic Chemistry of Sulfur: Tetracovalent Sulfur Compounds (Wi-
ley, New York, 1944), pp. 452–458.
71. C. J. Wagner, C. Schultz, M. A. Mall, Neutrophil elastase and matrix metalloproteinase
12 in cystic fibrosis lung disease. Mol. Cell Pediatr. 3, 25 (2016).
72. P. J. Barnes, Cytokines as mediators of chronic asthma. Am. J. Respir. Crit. Care Med.
150, S42–S49 (1994).
73. P. J. Barnes, Mediators of chronic obstructive pulmonary disease. Pharmacol. Rev. 56,
515–548 (2004).
74. K. C. Pandey, S. De, P. K. Mishra, Role of proteases in chronic obstructive pulmonary
disease. Front. Pharmacol. 8, 512 (2017).
75. Y. Qiu et al., Biopsy neutrophilia, neutrophil chemokine and receptor gene expression
in severe exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit.
Care Med. 168, 968–975 (2003).
76. A. Belaaouaj et al., Mice lacking neutrophil elastase reveal impaired host defense
against gram negative bacterial sepsis. Nat. Med. 4, 615–618 (1998).
77. J. P. Motta et al., Food-grade bacteria expressing elafin protect against inflammation
and restore colon homeostasis. Sci. Transl. Med. 4, 158ra144 (2012).
78. D. K. Myers, A. Kemp, Jr, Inhibition of esterases by the fluorides of organic acids.
Nature 173, 33–34 (1954).
36. W. Steinkopf, Aromatic sulphuric fluoride. J. Prakt. Chem. 117, 1–82 (1927).
37. W. Steinkopf, On aromatic sulpho-fluoride. J. Prakt. Chem. 128, 63–88 (1930).
38. W. Davies, J. H. Dick, Aliphatic sulphonyl flurorides. J. Chem. Soc. 1932, 483–486 (1932).
39. W. Davies, J. H. Dick, Benzenesulphonyl fluoride derivatives. J. Chem. Soc. 1932, 2042–
2046 (1932).
40. V. Gembus, F. Marsais, V. Levacher, An efficient organocatalyzed interconversion of
silyl ethers to tosylates using DBU and p-toluenesulfonyl fluoride. Synlett 2008, 1463–
1466 (2008).
41. E. J. Choi, D. Jung, J. S. Kim, Y. Lee, B. M. Kim, Chemoselective tyrosine bioconjugation
through sulfate click reaction. Chemistry 24, 10948–10952 (2018).
42. T. Hmissa et al., Autocatalytic synthesis of bifluoride ionic liquids by SuFEx click
chemistry. Angew. Chem. Int. Ed. Engl. 57, 16005–16009 (2018).
79. D. E. Fahrney, A. M. Gold, Sulfonyl fluorides as inhibitors of esterases. 1. Rates of
reaction with acetylcholinesterase, α-chymotrypsin, and trypsin. J. Am. Chem. Soc. 85,
997–1000 (1963).
43. J. L. Bourassa, E. P. Ives, A. L. Marqueling, R. Shimanovich, J. T. Groves, Myoglobin
catalyzes its own nitration. J. Am. Chem. Soc. 123, 5142–5143 (2001).
80. A. M. Gold, D. Fahrney, Sulfonyl fluorides as inhibitors of esterases. 2. Formation and
reactions of phenylmethanesulfonyl α-chymotrypsin. Biochemistry 3, 783–791 (1964).
Zheng et al.
PNAS
|
September 17, 2019
|
vol. 116
|
no. 38
|
18813