The nucleoside derivatives required for our study, namely,
the R-L-3′-deoxy-3′-N-(4′′-methoxytrityl)amino threofura-
nosyl nucleosides 8 and 9 and the isomeric R-L-2′-deoxy-
2′-N-(4′′-methoxy trityl)amino threofuranosyl nucleosides 16
and 22 were prepared according to Schemes 1, 2, and 3.11
The synthesis of the nucleosides 8 and 9 starts with 1,2,3-
tri-O-acetyl erythrose 112 (Scheme 1) and proceeds by
mesyloxy nucleosides 4 and 5, and substitution of the
mesyloxy group by azide ions leads from the erythro into
the threo series through inversion of configuration. The latter
is evidenced by an X-ray analysis of the azido alcohol 6 in
the thymine series.14 Catalytic hydrogenation of the azide
group, followed by protection of the amino group by mono-
4-methoxytrityl chloride (MMT),15 affords the target nucleo-
side 8 and 9.
Scheme 1a
Scheme 2a
a Numbers in parentheses denote molar equivalents referring to
starting compound or ratios. Numbers before these parentheses
denote concentrations in M. (a) (i) 0.3 M (1.1 molar equiv) ABz or
T, 0.6 (2.5) BSA, CH3CN, 60˚C, 1 h, then 0.8 (3.0) SnCl4 60 ˚C,
20 min; (ii) for B ) ABz, 1 M NaOH in THF/MeOH/H2O 5:4:1, 4
˚C, 10 min, 68%; for B ) T, 2 M NH3 (MeOH) in THF, rt 14 h,
65%; (b) (i) 0.3-0.9 (2.0) DMT-Cl, Py, rt, 14 h, then 0.2-0.6 (1.3)
Ms-Cl, 4 °C f rt, 16 h; (ii) 0.4 (11.7) TFA, CH2Cl2, MeOH (3:
96:1), rt, 30 min., 49% for ABz, 74% for T; (c) 2.1 (7.0) NaN3,
DMF/H2O (4:1), 100 ˚C, 4 h, 82% for ABz, 78% for T; (d) (i) H2,
10% Pd/C, MeOH, rt, 1 h; (ii) 0.3 (1.5) MMT-Cl, Py, rt, 2 h, 92%
for ABz, 96% for T; (e) 0.3 (1.2) chloro(2-cyanoethoxy)(diisopro-
pylethylamino)phosphine, 0.7 (2.5) NEt(i-Pr)2, CH2Cl2, rt ,1 to 3h,
87% for ABz, 90% for T.
a (a) 2.1 M (8.0 molar equiv) NaN3, 0.3 (1.2) BzOH, HMPA,
150 °C, 2 H, 82%; (b) 10% Pd-C, H2, MeOH, rt, 2 h, 97%; (c)
1.4 (1.2) MMT-Cl, Py, rt, 1.5 h, 91%; (d) 0.3 (1.5) chloro(2-
cyanoethoxy)(diisopropylethylamino)phosphine, 0.5 (4.0) NEt(i-
Pr)2, CH2Cl2, rt, 92%.
The synthesis of the isomeric nucleosides 16 (Scheme 2)
and 22 (Scheme 3) starts from the thymine-derived anhydro-
nucleoside 13, the preparation of which from R-L-threofura-
nosyl thymine 12 was reported earlier.2 Proton-catalyzed ring
opening in 13 by reaction with sodium azide16 at elevated
temperature, catalytic reduction of the azide group of 14,
and protection of the amino group of 15 to give the thymine
nucleoside 16 are all reactions that proceeded in high yield.
The corresponding adenine-containing nucleoside in this
series (Scheme 3) is obtained by the (TfA)-transnucleosi-
dation17 18 f 19. The reaction is performed under modified
Vorbru¨ggen nucleosidation conditions13 and proceeds in a
satisfactory yield of 74%, provided that the 2′-amino group
is protected with the trifluoroacetyl group.17 Base-catalyzed
nucleosidation under Vorbru¨ggen-Hilbert-Johnson condi-
tions13 followed by selective base-catalyzed hydrolysis of
the O-acetyl groups to 2 and 3. Monotritylation with 4,4′-
dimethoxytrityl chloride (DMT-Cl) in pyridine in both series
occurs selectively at the 2′-hydroxyl (for B ) thymine, 84%
2′-O-DMT, 3% 3′-O-DMT, 6% 2′,3′-bis-O-DMT; for B )
N6-benzoyladenine, 43% 2′-O-DMT, 33% of a mixture of
2′- and 3′-O-DMT and 6% of 2′,3′-bis-O-DMT; percentages
refer to isolated material). Mesylation of the free 3′-hydroxyls
followed by acid-catalyzed detritylation affords the 3′-
(11) All compounds were fully characterized by H and 13C NMR and
1
(5) Letsinger, R. L.; Mungall, W. S. J. Org. Chem. 1970, 35, 3800.
Gryaznov, S. M.; Letsinger, R. L. Nucleic Acids Res. 1992, 20, 3403.
(6) Gryaznov, S.; Chen, J. K. J. Am. Chem. Soc. 1994, 116, 3143. Chen,
J. K.; Schultz, R. G.; Lloyd, D. H.; Gryaznov, S. M. Nucleic Acids Res.
1995, 23, 2661.
(7) Matray, T. J.; Gryaznov, S. M. Nucleic Acids Res. 1999, 27, 3976.
(8) Lohrmann, R.; Orgel. L. E. Nature 1976, 261, 342. Lohrmann, R.;
Orgel. L. E. J Mol. EVol. 1976, 7, 253. Lohrmann, R.; Orgel. L. E. J Mol.
EVol. 1977, 9, 323. Zielinski, W. S.; Orgel, L. E. Nature 1987, 327, 3467.
Zielinski, W. S.; Orgel, L. E. Nucleic Acids Res. 1987, 15, 1699.
(9) Kiedrowsky, G. v.; Wlotzka, B.; Helbing, J.; Matzen, M.; Gordon,
S. Angew. Chem., Int. Ed. Engl. 1991, 30, 423. Sievers, D.; Kiedrowsky,
G. v. Chem. Eur. J. 1998, 4, 629.
mass spectral data after purification by column chromatography on silica
gel. A full experimental account will be published in HelV. Chim. Acta.
(12) Kline, P. C., Serianni, S. J. Org. Chem. 1992, 57, 1772.
(13) Vorbru¨ggen, H.; Bennua, B. Chem. Ber. 1981, 114, 1279. Bo¨hringer,
M.; Roth, H.-J.; Hu¨nziker, J.; Go¨bel, M.; Krishnan, R.; Giger, A.; Schweizer,
B.; Schreiber, J.; Leumann, C.; Eschenmoser, A. HelV. Chim. Acta 1992,
75, 1416.
(14) The X-ray analysis was carried by Raj K. Chadha, TSRI. Crystal-
lographic data for the structure have been deposited with the Cambridge
Crystallographic Data Center as deposition No. CCDC 172143. Copies of
the data can be obtained, free of charge, on application to the CCDC, 12
Union Road, Cambridge CB12 1EZ, UK (fax +44 (1233) 336 0333; e-mail
deposit@ccdc.cam.ac.uk).
(10) Gryaznov, S. M.; Lloyd, D. H.; Chen, J.-K.; Schultz, R. G.;
DeDionisio, L. A.; Ratmeyer, L.; Wilson, W. D. Proc. Natl. Acad. Sci.
U.S.A. 1995, 92, 5798.
(15) Bannwarth, W. HelV. Chim. Acta 1988, 71, 1517.
(16) Verheyden, J. P. H.; Wagner, D.; Moffatt, J. G. J. Org. Chem. 1971,
36, 250.
1280
Org. Lett., Vol. 4, No. 8, 2002