1612
R. Banteli et al. / Bioorg. Med. Chem. Lett. 11 (2001) 1609–1612
¨
might be independent of CyP binding and the region of
1, which interacts with a yet unknown target, is not
affected by hydrogenation. The overall immunosup-
pressive activity of 3 is decreased in comparison to 11
indicating that the 61 hydroxy group is crucial for
immunosuppressive activity. This information is con-
sistent with our view that the tripeptide unit is the
structural motive determining the CyP binding and
immunosuppressive activity.2d
Zenke, G.;Wagner, J. Angew. Chem., Int. Ed. 1999, 38, 2443.
(e) For a total synthesis of the sanglifehrin A, see: Nicolaou,
K. C.;Ohshima, T.;Murphy, F.;Barluenga, S.;Xu, J.;Wins-
singer, N. Chem. Commun. 1999, 9, 809. (f) Nicolaou, K. C.;
Xu, J.;Murphy, F.;Barluenga, S.;Baudoin, O.;Wei, H.-X.;
Gray, D. L. F.;Ohshima, T. Angew. Chem., Int. Ed. 1999, 38,
2447. (g) Nicolaou, K. C.;Murphy, F.;Barluenga, S.;
Ohshima, T.;Wei, H.;Xu, J.;Gray, D. L. F.;Baudoin, O.
J.
Am. Chem. Soc. 2000, 122, 3830. (h) Paquette, L. A.;
Konetzki, I.;Duan, M. Tetrahedron Lett. 1999, 40, 7441.
3. Spectral data for compound 2. The 1H NMR interpretation
1
In summary, our results show that very selective chemi-
cal derivations can be performed on this complex nat-
ural product. The 53-deoxo compound 2 shows similar
activities compared to 1, which indicates that the 53-
keto group is not necessary for immunosuppressive
activity and its removal does not alter cell permeation.
On the contrary, the 61-deoxy compound 3 shows
decreased MLR activity compared to 11 despite
increased cell permeation, which indicates that the 61
hydroxy group is crucial for immunosuppressive activ-
ity. Further work was undertaken to increase the cell
permeation while maintaining or even increasing the
immunosuppressive activity of sanglifehrin A (1).
Results will be reported elsewhere.
was corroborated by an HSQC spectrum. H NMR (DMSO-
d6, 500 MHz) d 9.25 (s, 1H), 8.14 (d, J=6.5 Hz, 1H), 7.89 (s,
1H), 7.44 (d, J=9.0 Hz, 1H), 7.06 (t, J=7.7 Hz, 1H), 6.59 (dd,
J=1.0 Hz, J=7.0 Hz, 1H), 6.57 (d, J=7.2 Hz, 1H), 6.51 (s,
1H), 6.21 (dd, J=11.4 Hz, J=15.0 Hz, 1H), 6.13 (dd, J=11.4
Hz, J=15.0 Hz, 1H), 6.01 (dd, J=10.8 Hz, J=13.8 Hz, 1H),
5.97 (t, J=11.4 Hz, 1H), 5.68 (td, J=7.2 Hz, J=14.4 Hz, 1H),
5.58 (m, 3H), 5.40 (m, 2H), 5.23 (d, J=9.4 Hz, 1H), 4.79 (d,
J=3.5 Hz, 1H), 4.49 (d, J=11.4 Hz, 1H), 4.18 (m, 1H), 4.05
(m, 2H), 3.90 (m, 1H), 3.82 (m, 1H), 3.69 (t, J=9.6 Hz, 1H),
3.56 (m, 1H), 3.51 (m, 1H), 2.78–2.23 (m, 7H), 2.13–1.08
(m, 29H), 1.71 (s, 3H), 0.93–0.75 (m, 24H, 8ꢂaliphatic
CH3 including 53-CH2–CH3), 0.62 (d, J=6.7 Hz, 3H);
C60H93N5O12, MScalcd for MꢃH requires 1074.68, found
1074.6.
4. Hendrickson, J. B.;Bergeron, R. Tetrahedron Lett. 1973,
4607.
5. Cabri, W.;De Bernardinis, S.;Francalanci, F.;Penco, S. J.
Chem. Soc., Perkin Trans. 1 1990, 428.
Acknowledgements
6. Spectral data for compound 3. The 1H NMR interpretation
1
The authors thank L. Walliser, D. Wagner, U. Stritt-
matter-Keller and S. Fuchs for their excellent technical
assistance.
was corroborated by an HSQC spectrum. H NMR (DMSO-
d6, 400 MHz) d 8.48 (s, br, 1H), 7.90 (s, 1H), 7.38–7.12 (m,
4H), 5.80 (m, 1H), 5.59 (d, J=4.8 Hz, 1H), 5.15–4.65 (m, 3H),
4.18 (s, 1H), 4.12 (m, 1H), 3.98 (d, J=6.0 Hz, 1H), 3.70 (m,
2H), 3.58 (s, br, 1H), 3.50 (m, 1H), 3.22 (m, 1H), 2.90–2.60 (m,
ca. 6H), 2.50–2.30 (m, 2H), 2.18 (m, 1H), 2.07 (s, 3H), 2.10–
1.00 (m, ca. 44H), 0.95–0.70 (m, 21H), 0.62 (d, J=6.7 Hz, 3H);
although 3 is a mixture of diastereomers this is not apparent
from the NMR spectrum;C 60H99N5O12, MScalcd for MꢃH
requires 1080.73, found 1080.7.
7. The cell-free CyP-binding was determined in an enzyme-
linked immunosorbent assay analogous to the assay described
in Schneider, H.;Charara, N.;Schmitz, R.;Wehrli, S.;Mikol,
V.;Zurini, M. G.;Quesniaux, V. F.;Movva, N. R. Biochem-
istry 1994, 33, 8218 with the exception that cyclosporine con-
jugated to bovine serum albumin was replaced by sanglifehrin
coupled to bovine serum albumin.
References and Notes
1. (a) Sanglier, J.-J.;Quesniaux, V.;Fehr, T.;Hofmann, H.;
Mahnke, M.;Memmert, K.;Schuler, W.;Zenke, G.;
Gschwind, L.;Maurer, C.;Schilling, W. J. Antibiot. 1999, 52,
466. (b) Fehr, T.;Kallen, J.;Oberer, L.;Sanglier, J.-J.;Schil-
ling, W. J. Antibiot. 1999, 52, 474. (c) Fehr, T.;Oberer, L.;
Quesniaux Ryffel, V.;Sanglier, J.-J.;Schuler, W.;Sedrani, R.
PCT International Patent Application WO 97/02285-A1,
CAN 126:170491.
2. (a) Banteli, R.;Brun, I.;Hall, P.;Metternich, R.
Tetra-
8. Intracellular CyP-binding was assessed in a competitive
format with whole cells and 3H-cyclosporine A as described in
Baumann, G.;Andersen, E.;Quesniaux, V.;Eberle, M. K.
Transplant. Proc. 1992, 24, 43.
hedron Lett. 1999, 40, 2109. (b) Metternich, R.;Denni, D.;
Thai, B.;Sedrani, R. J. Org. Chem. 1999, 64, 9632. (c) Hall, P.;
Brun, J.;Denni, D.;Metternich, R. Synlett 2000, 3, 315. (d)
Martin Cabrejas, L. M.;Rohrbach, S.;Wagner, D.;Kallen, J.;