J. Am. Chem. Soc. 2001, 123, 7443-7444
7443
Scheme 1
The First Transition Metal Complex of
Tetrafluorobenzyne: Ir(η5-C5Me5)(PMe3)(η2-C6F4)
Russell P. Hughes,*,§ Alex Williamson,§
Roger D. Sommer,| and Arnold L. Rheingold|
Scheme 2a
Departments of Chemistry, 6128 Burke Laboratory
Dartmouth College, HanoVer, New Hampshire 03755
UniVersity of Delaware, Newark, Delaware 19716
ReceiVed April 19, 2001
While tetrafluorobenzyne 1 has been proposed as an intermedi-
ate in many organometallic transformations, no stable metal
complex of this ligand has been prepared, either by in situ
generation of the tetrafluorobenzyne ligand1-4 or by reaction of
exogenous tetrafluorobenzyne with a metal complex.5,6 Attempts
to prepare transition metal complexes of the hydrocarbon parent,
benzyne, have been more successful, and η2 complexes of both
early and late transition metals have been isolated and crystal-
lographically characterized. These compounds (inter alia) have
been the subjects of recent reviews.7,8 Here we report the synthesis,
and the complete structural characterization of, a mononuclear
iridium complex of tetrafluorobenzyne that shows a significantly
different distribution of intraring bond lengths than do its
hydrocarbon analogues.
a R ) H, F; X ) Cl, Br.
Scheme 3
The principal method for synthesis of metal complexes of
benzyne involves an ortho carbon-hydrogen bond activation of
a phenyl ligand and elimination of RH (R ) CH3, C6H5) as shown
in Scheme 1. Representative examples of compounds prepared
by this approach include 2,9 3,10 4,11 and 5.12 An alternative route
4,5-difluorobenzyne complexes of nickel, characterized only by
their solution spectra and their reactivity patterns.7,14
Our successful approach is shown in Scheme 3. Pentafluo-
rophenyl complex 7 is prepared by oxidative addition of iodo-
pentafluorobenzene to Ir(C5Me5)(CO)2 in the manner used to
prepare perfluoroalkyl-iridium analogues.15 This reaction requires
prolonged refluxing in benzene, while the corresponding per-
fluoroalkyl iodides react at room temperature.15 Choice of solvent
(5) Roe, D. M.; Massey, A. G. J. Organomet. Chem. 1970, 23, 547-550.
(6) Roe, D. M.; Massey, A. G. J. Organomet. Chem. 1969, 20, P1-P2.
(7) Bennett, M. A.; Wenger, E. Chem. Ber./Recl. 1997, 130, 1029-1042.
(8) Jones, W. M.; Klosin, J. AdV. Organomet. Chem. 1998, 42, 147-221.
(9) McLain, S. J.; Schrock, R. R.; Sharp, P. R.; Churchill, M. R.; Youngs,
W. J. J. Am. Chem. Soc. 1979, 101, 263-265.
to group 10 complexes of benzyne has been by reduction of ortho-
halogenated aryl derivatives, as shown in Scheme 2 for nickel
complexes 6.13 Neither route has afforded tetrafluorobenzyne
complexes, although the latter has been used to prepare some
(10) Buchwald, S. L.; Watson, B. T.; Huffman, J. C. J. Am. Chem. Soc.
1986, 108, 7411-7413.
(11) Buijink, J. K. F.; Kloetstra, K. R.; Meetsma, A.; Teuben, J. H.; Smeets,
W. J. J.; Spek, A. L. Organometallics 1996, 15, 2523-2533.
(12) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. J. Am. Chem. Soc.
1991, 113, 3404-3418.
§ Dartmouth College.
| University of Delaware.
(1) Edelbach, B. L.; Kraft, B. M.; Jones, W. D. J. Am. Chem. Soc. 1999,
121, 10327-10331.
(13) Bennett, M. A.; Hambley, T. W.; Roberts, N. K.; Robertson, G. B.
Organometallics 1985, 4, 1992-2000.
(2) Deacon, G. B.; Mackinnon, P. I.; Tuong, T. D. Aust. J. Chem. 1983,
36, 43-53.
(14) Bennett, M. A.; Dirnberger, T.; Hockless, D. C. R.; Wenger, E.; Willis,
A. C. J. Chem. Soc., Dalton Trans. 1998, 271-278.
(3) Deacon, G. B.; Koplick, A. J.; Raverty, W. D.; Vince, D. G. J.
Organomet. Chem. 1979, 182, 121-141.
(15) Hughes, R. P.; Smith, J. M.; Liable-Sands, L. M.; Concolino, T. E.;
Lam, K.-C.; Incarvito, C.; Rheingold, A. L. J. Chem. Soc., Dalton Trans.
2000, 873-879.
(4) Razuvaev, G. A.; Vyshinskaya, L. I.; Drobotenko, V. V.; Latyaeva, V.
N. Dokl. Akad. Nauk SSSR 1981, 259, 127-131 [Chem.].
10.1021/ja010992o CCC: $20.00 © 2001 American Chemical Society
Published on Web 07/07/2001