10.1002/anie.202006689
Angewandte Chemie International Edition
RESEARCH ARTICLE
simple precursors, and therefore goes beyond the more common
uncaging or ligation reactions. Our intracellular synthetic strategy
allows to generate products that otherwise cannot be delivered to
the cell, as well as controlling their spatial distribution by using
suitable ruthenium reagents. Indeed, the possibility of generating
the desired products in specific subcellular locations, just by
changing the targeting characteristics of the reagents, is exciting.
While further work to increase the efficiency of the reactions is
needed, our discoveries should further foster this young field of
intracellular metal catalysis, and trigger important applications in
chemical and synthetic biology, and in biomedicine.
Keywords: Biological chemistry • Cycloadditions • Ruthenium •
Metal catalysis • Intracellular chemistry
[1]
a) S. Martínez Cuesta, S. A. Rahman, N. Furnham, J. M. Thornton,
Biophys J. 2015, 109, 1082-1086; b) B. Alberts, A. Johnson, J. Lewis, D.
Morgan, M. Raff, K. Roberts, P. Walter in Molecular biology of the cell 2017,
Garland Science; sixth edition, New York and Abingdon, UK.
[2]
a) M. T. Reetz, Acc. Chem. Res. 2019, 52, 336-344; b) F. Schwizer, Y.
Okamoto, T. Heinisch, Y. Gu, M. M. Pellizzoni, V. Lebrun, R. Reuter, V. Köhler,
J. C. Lewis, T. R. Ward, Chem. Rev. 2018, 118, 142-231; c) M. Jeschek, S.
Panke, T. R. Ward, Trends in Biotech. 2018, 36, 60-72; d) R. B. Leveson-Gower,
C. Mayer, G. Roelfes, Nat. Rev.Chem. 2019, 3, 687-705.
[3]
a) M. Yang, J. Li, P. R. Chen, Chem. Soc. Rev. 2014, 43, 6511-6526; b)
J. Li, J. Yu, J. Zhao, J. Wang, S. Zheng, S. Lin, L. Chen, M. Yang, S. Jia, X.
Zhang, P. R. Cheng, Nat. Chem. 2014, 6, 352-361; c) J. Wang, B. Cheng, J. Li,
Z. Zhang, W. Hong, X. Chen, P. R. Chen, Angew. Chem. Int. Ed. 2015, 54,
5364−5368; d) A. M. Pérez-López, B. Rubio-Ruiz, V. Sebastián, L. Hamilton, C.
Adam, T. L. Bray, S. Irusta, P. M. Brennan, G. C. Lloyd-Jones, D. Sieger, J.
Santamaría, A. Unciti-Broceta, Angew. Chem. Int. Ed. 2017, 56, 12548-12552;
e) C. Adam, A. M. Pérez-López, L. Hamilton, B. Rubio-Ruiz, T. L. Bray, D.
Sieger, P. M. Brennan, A. Unciti-Broceta, Chem. Eur. J. 2018, 24, 16783-16790;
f) M. Sancho-Abero, B. Rubio-Ruiz, A. M. Pérez-López, V. Sebastián, P. Martín-
Duque, M. Arruebo, J. Santamaría, A. Unciti-Broceta, Nat. Catal. 2019, 2, 864-
872.
Reaction with Ru1: CYTOSOLIC DISTRIBUTION
Reaction
Mitochondrial marker
Overlay
Reaction with Ru3: MITOCHONDRIAL ACCUMULATION
[4]
For recent reviews, see: a) M. Martínez-Calvo, J. L. Mascareñas, Coord.
Chem. Rev. 2018, 359, 57-79; b) A. H. Ngo, S. Bose, L. H. Do, Chem. Eur. J.
2018, 24, 10584-10594; c) Y. Bai, J. Chen, S. C. Zimmerman, Chem. Soc. Rev.
2018, 47, 1811-1821; d) J. J. Soldevilla-Barreda, N. Metzler-Nolte, Chem. Rev.
2019, 119, 829-869; e) M. Martínez-Calvo, J. L. Mascareñas, Chimia 2018,
11, 791-801.
[5]
a) C. Streu, E. Meggers, Angew. Chem. Int. Ed. 2006, 45, 5645-5648; b)
Reaction
Mitochondrial marker
Overlay
T. Völker, F. Dempwolff, P. L. Graumann, E. Meggers, Angew. Chem. Int. Ed.
2014, 53, 10536-10540; c) M. I. Sánchez, C. Penas, M. E. Vázquez, J. L.
Mascareñas, Chem. Sci. 2014, 5, 1901-1907; d) G. Y. Tonga, Y. Jeong,
B. Duncan, T. Mizuhara, R. Mout, R. Das, S. T. Kim, Y. C. Yeh, B. Yan, S. Hou,
V. M. Rotello, Nat. Chem. 2015, 7, 597-603; e) M. Tomás-Gamasa, M.
Martínez-Calvo, J. R. Couceiro, J. L. Mascareñas, Nat. Commun. 2016, 7,
12538-12547; f) M. Martínez-Calvo, J. R. Couceiro, P. Destito, J. Rodríguez, J.
Mosquera, J. L. Mascareñas, ACS Catal. 2018, 8, 6055-6061; g) B. J. Stenton,
B. L. Oliveira, M. J. Matos, L. Sinatra, G. J. L. Bernardes, Chem. Sci. 2018, 9,
4185-4189; h) S. Learte-Aymamí, C. Vidal, A. Gutiérrez-González, J. L.
Mascareñas, Angew. Chem. Int. Ed. 2020, 59, 9149-9154; i) P. Destito, A.
Sousa-Castillo, J. R. Couceiro, F. López, M. A. Correa-Duarte, J. L.
Mascareñas, Chem. Sci. 2019, 10, 2598-2603; j) R. Martínez, C. Carrillo-
Carrión, P. Destito, A. Álvarez, M. Tomás-Gamasa, B. Peláz, F. López, J. L.
Mascareñas, P. Del Pino Cell. Rep. Phys. Sci. 2020, 1, 100076.
Ru
O
O
N
P
O
N
Ph2
O
Ru3
Figure 6. Reagent-dependent spatial distribution of the product of the
reaction between 6a and 8b. Fluorescence micrographies of HeLa cells
incubated with: (A,D) Ru1 or Ru3, respectively, washed, and treated with 6a
and 8b (red channel); (B,E) mitochondrial labelling with TMRE
(tetramethylrhodamine ethyl ester, green channel); (C) overlay of A and B; (F)
overlay of D and E. Same conditions as in Figure 5. Cells were finally incubated
with mitochondrial marker (100 nM) for 10 min. Scale bar: 12.5 μm. Note:
-
counterions in Ru3 are Br- and PF6 .
[6]
a) J. J. Soldevila-Barreda, I. Romero-Canelon, A. Habtemariam, P. J.
Sadler, Nat. Commun. 2015, 6, 6582-6590; b) J. P. C. Coverdale, I. Romero-
Canelon, C. Sanchez-Cano, G. J. Clarkson, A. Habtemariam, M. Wills, P. J.
Sadler, Nat. Chem. 2018, 10, 347−354; c) S. Bose, A. H. Ngo, L. Do, J. Am.
Chem. Soc. 2017, 139, 8792-8795.
Acknowledgements
This work has received financial support from the Spanish
Government (SAF2016-76689-R, ORFEO-CINQA network
CTQ2016-81797-REDC) the Consellería de Cultura, Educación e
Ordenación Universitaria (2015-CP082, ED431C-2017/19 and
Centro Singular de Investigación de Galicia Accreditation 2019-
2022, ED431G 2019/03), the European Union (European
Regional Development Fund-ERDF corresponding to the
multiannual financial framework 2014-2020), and the European
Research Council (Advanced Grant No. 340055). J. M. Á. thanks
the Ministerio de Educación, Cultura y Deporte for the FPU
fellowship (FPU16/00711) and M. T. G thanks the financial
support from the Agencia Estatal de Investigación (RTI2018-
093813-J-I00). The authors thank R. Menaya-Vargas for excellent
technical assistance, and especially M. Marcos for excellent and
essential contributions to the LC-MS analysis.
[7]
J. Am. Soc. Chem. 2019, 141, 5125-5129.
[8] a) C. Vidal, M. Tomás-Gamasa, P. Destito, F. López, J. L. Mascareñas,
C. Vidal, M. Tomás-Gamasa, A. Gutiérrez-González, J. L. Mascareñas,
Nat. Commun. 2018, 9, 1913-1921; b) M. A. Miller, B. Askevold, H. Mikula, R.
H. Kohler, D. Pirovich, R. Weissleder, Nat. Commun. 2017, 8, 15906-15918.
[9]
There have been claims on the existence of Diels-Alderases: a) A.
Minami, H. Oikawa, The Journal of Antibiotics 2016, 1–7; b) H. Oikawa, Cell
Chemical Biology 2016, 429-430.
[10] a) A. J. Link, D. A. Tirrell, J. Am. Chem. Soc. 2003, 125, 11164−11165;
b) A. J. Link, M. K. S. Vink, D. A. Tirrell, J. Am. Chem. Soc. 2004, 126,
10598−10602; c) K. E. Beatty, F. Xie, Q. Wang, D. A. Tirrell, J. Am. Chem. Soc.
2005, 127, 14150-14151; d) Y. Bai, X. Feng, H. Xing, Y. Xu, B. K. Kim, N. Baig,
T. Zhou, A. A. Gewirth, Y. Lu, E. Oldfield, S. C. Zimmerman, J. Am. Chem. Soc.
2016, 138, 11077-10080; e) S. Li, L. Wang, F. Yu, Z. Zhu, D. Shobaki, H. Chen,
M. Wang, J. Wang, G. Qin, U. J. Erasquin, L. Ren, Y. Wang, C. Cai, Chem. Sci.
5
This article is protected by copyright. All rights reserved.