Cation-Specific Chemosensors
A R T I C L E S
Figure 1. Schematic representation of a chemosensor based on a cation-driven, exciton interaction in a dye-linked podand.
reports which pertain to macrocycle- and pseudomacrocycle-
based ion recognition systems in combination with the supramo-
lecular approach.7 Although none of these latter systems have
been projected as chemosensors, they are interesting from the
viewpoint of specific supramolecular recognition-induced al-
losteric effects,7a chirality transfer,7b and photochemistry.7c
Signal transduction in most of the chemosensors is achieved
either by photoinduced electron,5e-g,8 energy,5f or charge-transfer
processes,5a-c,9 by excimer formation,4h,6,10 or by conformational
restrictions.11 Therefore, the design of cation-specific chemosen-
sors, which work on alternate ways of signal transduction, is
of fundamental importance. This has prompted us to think of
exciton interaction in organic dye aggregates as a potential
signaling process of a specific cation binding event. The idea
involves a cation-induced folding or dimerization of dye-linked
podands to form complexes akin to organic dye aggregates in
which exciton interaction in the bound complex produces
measurable changes in optical and photophysical properties
(Figure 1). We speculated that if face-to-face interactions of
organic dyes similar to those of an “H” aggregate can be induced
by a metal ion, the binding event could be expressed in the
form of a measurable optical signal. For this purpose, we have
selected squaraine dyes as the signal transducing chromophore
for several reasons.
(4) (a) Prodi, L.; Bolletta, F.; Zaccheroni, N.; Watt, I. F.; Mooney, N. J. Chem.-
Eur. J. 1998, 4, 1090. (b) Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni,
N.; Savage, P. B.; Bradshaw, J. S.; Izatt, R. M. Tetrahedron Lett. 1998,
39, 5451. (c) Ushakov, E. N.; Gromov, S. P.; Fedorova, O. A.; Pershina,
Y. V.; Alfimov, M. V.; Barigelletti, F.; Flamigni, L.; Balzani, V. J. Phys.
Chem. A 1999, 103, 11188. (d) Ames, J. B.; Hendricks, K. B.; Strahl, T.;
Huttner, I. G.; Hamasaki, N.; Thorner, J. Biochemistry 2000, 39, 12149.
(e) Watanabe, S.; Ikishima, S.; Matsuo, T.; Yoshida, K. J. Am. Chem. Soc.
2001, 123, 8402. (f) Cha, N. R.; Moon, S, Y.; Chang, S.-K. Tetrahedron
Lett. 2003, 44, 8265. (g) Momotake, A.; Arai, T. Tetrahedron Lett. 2003,
44, 7277.
(5) (a) Vo¨gtle, F.; Weber, E. Angew. Chem., Int. Ed. Engl. 1979, 18, 753. (b)
Dix, J. P.; Vo¨gtle, F. Chem. Ber. 1980, 113, 457. (c) Lo¨hr, H.-G.; Vo¨gtle,
F. Chem. Ber. 1985, 118, 914. (d) Lo¨hr, H.-G.; Vo¨gtle, F. Acc. Chem. Res.
1985, 18, 65 and references therein. (e) Huston, M. E.; Haider, K. W.;
Czarnik, A. W. J. Am. Chem. Soc. 1988, 110, 4460. (f) Valeur, B.; Pouget,
J.; Bourson, J.; Kaschke, M.; Ernsting, N. P. J. Phys. Chem. 1992, 96,
6545. (g) Fabbrizzi, L.; Lichelli, M.; Pallavicini, P.; Perotti, A.; Sacchi, D.
Angew. Chem., Int. Ed. Engl. 1994, 33, 1975. (h) Fabbrizzi, L.; Lichelli,
M.; Pallavicini, P.; Perotti, A.; Taglietti, D.; Sacchi, D. Chem.-Eur. J. 1996,
2, 167. (i) Habata, Y.; Fukuda, Y.; Akabori, S.; Bradshaw, J. S. J. Chem.
Soc., Perkin Trans. 1 2002, 865. (j) Hayashita, T.; Qing, D.; Minagawa,
M.; Lee, J. C.; Ku, C. H.; Teramae, N. Chem. Commun. 2003, 2160.
(6) (a) Kakizawa, Y.; Akita, T.; Nakamura, H. Chem. Lett. 1993, 1671. (b)
Suzuki, Y.; Morozumi, T.; Nakamura, H.; Shimomura, M.; Hazashita, T.;
Bartsh, R. A. J. Phys. Chem. B 1998, 102, 7910. (c) Morozumi, T.; Anada,
T.; Nakamura, H. J. Phys. Chem. B 2001, 105, 2923. (d) Morozumi, T.;
Hiraga, H.; Nakamura, H. Chem. Lett. 2003, 32, 2003.
(7) (a) Nabeshima, T.; Yoshihira, Y.; Saiki, T.; Akine, S.; Horn, E. J. Am.
Chem. Soc. 2003, 125, 28. (b) Nabeshima, T.; Hashiguchi, A.; Saiki, T.;
Akine, S. Angew. Chem., Int. Ed. 2002, 41, 481. (c) McSkimming, G.;
Tucker, J. H. R.; Bouas-Laurent, H.; Desvergne, J.-P. Angew. Chem., Int.
Ed. 2000, 39, 2167.
(8) (a) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. J. Am. Chem. Soc.
1997, 119, 7891. (b) de Silva, A. P.; Dixon, I. M.; Gunaratne, H. Q. N.;
Gunnlaugsson, T.; Maxwell, P. R. S.; Rice, T. E. J. Am. Chem. Soc. 1999,
121, 1393. (c) Nishizawa, S.; Watanabe, M.; Uchida, T.; Teramae, N. J.
Chem. Soc., Perkin Trans. 2 1999, 141. (d) He, H.; Mortellaro, M. A.;
Leiner, M. J. P.; Fraatz, R. J.; Tusa, J. K. J. Am. Chem. Soc. 2003, 125,
1468. (e) He, H.; Mortellaro, M. A.; Leiner, M. J. P.; Young, S. T.; Fraatz,
R. J.; Tusa, J. K. Anal. Chem. 2003, 75, 549.
Squaraine dyes are a well-studied class of organic dyes having
interesting optical and photophysical properties which are
sensitive to the surrounding media.12 This property of squaraine
dyes has made them suitable for the design of a variety of
materials including cation sensors.12d,13-15 However, the selec-
tivity and sensitivity of these chemosensors to a specific analyte
is very poor except in a few cases.15b,c Recently, we have
reported squaraine oligomer-based cation sensors, which are
selective and sensitive, by applying Swager’s concept of
molecular wire-based signal amplification.16,17 Another striking
property of squaraine dyes is their ability to form “J” (red-shift)
or “H” (blue-shift) aggregates in appropriate solvent media.18
In the majority of the cases, they form “H” aggregates with a
blue-shifted absorption band relative to the monomer.19 Re-
(12) (a) Treibs, A.; Jacob, K. Angew. Chem., Int. Ed. Engl. 1965, 4, 694. (b)
Sprenger, H.-E.; Ziegenbein, W. Angew. Chem., Int. Ed. Engl. 1968, 7,
530. (c) Schmidt, A. H. Synthesis 1980, 961. (d) Law, K. Y. Chem. ReV.
1993, 93, 449. (e) Das, S.; Thomas, K. G.; George, M. V. In Molecular
and Supramolecular Photochemistry: Organic Photochemistry; Rama-
murthy, V., Schanze, K. S., Eds.; Dekker: New York, 1997; Vol. 1, p
467.
(13) (a) Loutfy, R. O.; Hsiao, C. K.; Kazmaier, P. M. Photogr. Sci. Eng. 1983,
27, 5. (b) Law, K.-Y. J. Phys. Chem. 1987, 91, 5184 and references therein.
(14) For squaraine-based low band gap systems, see: (a) Ajayaghosh, A.; Eldo,
J. Org. Lett. 2001, 3, 2595. (b) Eldo, J.; Ajayaghosh, A. Chem. Mater.
2002, 14, 410. (c) Ajayaghosh, A. Chem Soc. ReV. 2003, 32, 181. (d)
Bu¨schel, M.; Ajayaghosh, A.; Arunkumar, E.; Daub, J. Org. Lett. 2003, 5,
2975.
(15) (a) Das, S.; Thomas, K. G.; Thomas, K. J.; Kamat, P. V.; George, M. V.
J. Phys. Chem. 1994, 98, 9291. (b) Thomas, K. G.; Thomas, K. J.; Das, S.;
George, M. V. Chem. Commun. 1997, 597. (c) Akkaya, E. U.; Turkyilmaz,
S. Tetrahedron Lett. 1997, 38, 4513. (d) Oguz, U.; Akkaya, E. U.
Tetrahedron Lett. 1997, 38, 4509. (e) Oguz, U.; Akkaya, E. U. Tetrahedron
Lett. 1998, 39, 5857. (f) Kurker, B.; Akkaya, E. U. Tetrahedron Lett. 1999,
40, 9125. (g) Dilek, G.; Akkaya, E. U. Tetrahedron Lett. 2000, 41, 3721.
(16) Swager, T. M. Acc. Chem. Res. 1998, 31, 201.
(9) (a) Tsien, R. Y. Am. J. Physiol. 1992, 263, C723. (b) Gromov, S. P.;
Ushakov, E. N.; Vedernikov, A. I.; Lobova, N. A.; Alfimov, M. V.;
Strelenko, Y. A.; Whitesell, J. K.; Fox, M. A. Org. Lett. 1999, 1, 1697. (c)
Rurack, K.; Rettig, W.; Resch-Genger, U. Chem. Commun. 2000, 407. (d)
Witulski, B.; Weber, M.; Bergstrasser, U.; Desvergne, J.-P.; Bassani, D.
M.; Laurent, H. B. Org. Lett. 2001, 3, 1467.
(10) (a) Fages, F.; Desvergne, J.-P.; Kampke, K.; Bouas-Laurent, H.; Lehn, J.-
M.; Konopelski, J.-P.; Marsau, P.; Barrans, Y. J. Chem. Soc., Chem.
Commun. 1990, 655. (b) Hong, S. Y.; Czarnik, A. W. J. Am. Chem. Soc.
1993, 115, 3330. (c) Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H.; Lehn,
J.-M.; Barrans, Y.; Marsau, P.; Meyer, M.; Albrecht-Gary, A.-M. J. Org.
Chem. 1994, 59, 5264. (d) Sasaki, D. Y.; Shnak, D. R.; Pack, D. W.; Arnold,
F. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 905. (e) Kawakami, J.; Komai,
Y.; Ito, S. Chem. Lett. 1996, 617. (f) Strauss, J.; Daub, J. Org. Lett. 2002,
4, 683.
(11) (a) Xia, W.-S.; Schmehl, R. H.; Li, C.-J. J. Am. Chem. Soc. 1999, 121,
5599. (b) Xia, W.-S.; Schmehl, R. H.; Li, C.-J. Chem. Commun. 2000,
695. (c) Mello, J. V.; Finney, N. S. Angew. Chem., Int. Ed. 2001, 40, 1536.
(d) Weinig, H.-G.; Krauss, R.; Seydack, M.; Bendig, J.; Koert, U. Chem.-
Eur. J. 2001, 7, 2075. (e) McFarland, S. A.; Finney, N. S. J. Am. Chem.
Soc. 2002, 124, 1178. (f) Rurack, K.; Resch-Genger, U. Chem. Soc. ReV.
2002, 31, 116. (g) Wolf, C.; Mei, X. J. Am. Chem. Soc. 2003, 125, 10651.
(17) (a) Chenthamarakshan, C. R.; Ajayaghosh, A. Tetrahedron Lett. 1998, 39,
1795. (b) Chenthamarakshan, C. R.; Eldo, J.; Ajayaghosh, A. Macromol-
ecules 1999, 32, 5846.
(18) (a) Das, S.; Thanulingam, L.; Thomas, K. G.; Kamat, P. V.; George, M.
V. J. Phys. Chem. 1993, 97, 13620. (b) McKerrow, A. J.; Buncel, E.;
Kazmaier, P. M. Can. J. Chem. 1995, 73, 1605. (c) Chen, H.; Law, K.-Y.;
Whitten, D. G. J. Phys. Chem. 1996, 100, 5949. (d) Chen, H.; Farahat, M.
S.; Law, K.-Y.; Whitten, D. G. J. Am. Chem. Soc. 1996, 118, 2584. (e)
Ashwell, G. J.; Williamson, P. C.; Green, A.; Bahra, G. S.; Brown, C. R.
Aust. J. Chem. 1998, 51, 599. (f) Wojtyk, J.; McKerrow, A.; Kazmaier, P.;
Buncel, E. Can. J. Chem. 1999, 77, 903.
(19) (a) Chen, H.; Law, K.-Y.; Perlstein, J.; Whitten, D. G. J. Am. Chem. Soc.
1995, 117, 7257. (b) Liang, K.; Law, K.-Y.; Whitten, D. G. J. Phys. Chem.
1994, 98, 13379. (c) Das, S.; Thomas, K. G.; Thomas, K. J.; Madhavan,
V.; Liu, D.; Kamat, P. V.; George, M. V. J. Phys. Chem. 1996, 100, 17310.
(d) Arun, K. T.; Epe, B.; Ramaiah, D. J. Phys. Chem. B 2002, 106, 11622.
9
J. AM. CHEM. SOC. VOL. 126, NO. 21, 2004 6591