C
X.-J. Tang, Q.-Y. Chen
Letter
Synlett
(5) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R. Jr. Org. Lett. 2014, 16,
4594.
(6) Stahly, G. P. J. Fluorine Chem. 1989, 43, 53.
(7) Xu, Y.; Dolbier, W. R.; Rong, X. X. J. Org. Chem. 1997, 62, 1576.
(8) Tang, X.-J.; Chen, Q.-Y. Org. Lett. 2012, 14, 6214.
(9) Han, E.-J.; Sun, Y.; Shen, Q.; Chen, Q.-Y.; Guo, Y.; Huang, Y. G.
Org. Chem. Front. 2015, 2, 1379.
Cl
F
F
–
+ Cl
Cl
F
OPh
F
Cl
Cl
F
F
H
F
PhO K
–
Cl
+
PhO K
– KF
proton transfer
(10) Zheng, J.; Chen, Q.-Y.; Sun, K.; Huang, Y.; Guo, Y. Tetrahedron
Lett. 2016, 57, 5757.
(11) Han, E.-J.; Guo, Y.; Chen, Q.-Y. Youji Huaxue 2017, 37, 1714.
(12) Luo, J.; Han, E.-J.; Shen, Q.; Huang, M.; Huang, Y.; Liu, H.-M.;
Wang, W.; Chen, Q.-Y.; Guo, Y. Org. Process Res. Dev. 2016, 20,
1988.
Cl
Cl
F
OPh
F
PhOH
2a
Scheme 6 Proposed plausible reaction mechanisms
(13) Subramanian, R.; Johnson, F. J. Org. Chem. 1985, 50, 5430.
(14) Li, X.-y.; Pan, H.-q.; Jiang, X.-k.; Zhan, Z.-y. Angew. Chem. Int. Ed.
1985, 24, 871.
(15) Li, X.-y.; Jiang, X.-k.; Pan, H.-q.; Hu, J.-s.; Fu, W.-m. Pure Appl.
Chem. 1987, 59, 1015.
(16) Tarrant, P.; Brown, H. C. J. Am. Chem. Soc. 1951, 73, 5831.
(17) Fukui, H.; Sanechika, K.-i.; Watanabe, M.; Ikeda, M. J. Fluorine
Chem. 2000, 101, 91.
(18) Fukui, H.; Muruta, H.; Sanechika, K.-i.; Ikeda, M. J. Fluorine
Chem. 2000, 103, 129.
In summary, we have reported unexpected substitution
reaction of fluorine in HCFC-123 by phenolates. By increas-
ing the amount of the phenolate, the fluorine atoms in
HCFC-123 could be removed one by one. This reaction can
produce valuable fluorinated alkyl aryl ethers17,18 and un-
usual tetrasubstituted alkenes from readily available HCFC-
123 under simple conditions.19
(19) (2,2-Dichloro-1,1-difluoroethoxy)benzene (2a): Typical Pro-
cedure
Funding Information
A 20 mL Schlenk tube was charged with DMF (10 mL) and 1a (5
mmol, 470 mg). KOH (5 mmol, 280 mg) was added, and the
mixture was stirred at 40 °C until the KOH disappeared. The
mixture was then cooled to r.t. Precooled HCFC-123 (10 mmol,
1.52 g) was added to the solution, and the mixture was stirred
at 90 °C for 2 h, then cooled to r.t. The mixture was then poured
into Et2O (100 mL), washed with H2O, dried (Na2SO4), and con-
centrated by rotary evaporation under vacuum. The residue was
purified by flash column chromatography [silica gel, PE–CH2Cl2
(20:1)] to give a colorless oil; yield: 994 mg (88%).
1H NMR (300 MHz, CDCl3): = 7.35–7.40 (m, 2 H), 7.21–7.29 (m,
3 H), 5.91 (t, J = 4.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): =
149.5, 129.6, 126.4, 121.7, 119.7 (t, J = 270 Hz), 67.8 (t, J = 42
Hz). 19F NMR (282 MHz, CDCl3): = –80.2 (d, J = 5.8 Hz). MS (EI):
m/z (%) = 226 (M+, 21.51), 77 (100), 143 (50.87), 65 (38.96), 94
(30.34), 226 (21.51).
We thank the Chinese Academy of Science, the National Natural Sci-
ence Foundation of China (21032006), and the 973 Program of China
(2012CBA01200) for the financial support.Natio
n
al
N
aturalScie
n
ceFo
u
n
d
atio
n
o
f
C
h
i
na(
2
1
0
3
2
0
0
6)Natio
n
al
B
asic
R
esearchProgra
m
o
f
C
h
ina(9
7
3
Progra
m
)
(2
0
1
2
C
B
A
0
1
2
0)
Supporting Information
Supporting information for this article is available online at
p
p
ortingInformationS
u
p
p
ortingI
n
formatio
n
References and Notes
(1) Tang, X.-J.; Chen, Q.-Y. Chem. Sci. 2012, 3, 1694.
(2) Tang, X.-J.; Chen, Q.-Y. J. Fluorine Chem. 2015, 169, 1.
(3) Long, Z.-Y.; Chen, Q.-Y. J. Fluorine Chem. 1998, 91, 95.
(4) Lee, H.; Kim, K. H.; Kim, H.; Lee, S. D.; Kim, H. S. J. Fluorine Chem.
2004, 125, 95.
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–C