O. Kitagawa et al. / Tetrahedron Letters 42 (2001) 4865–4868
4867
O
O
OH O
OH
O
3equiv.
tert-BuLi
Me
Me
NPh
Li
+
NHPh
NHPh
NHPh
O
Li
O
Me
syn-2c (80 %ee)
Me
anti -2c (80 %ee)
1c (91 %ee)
(55 %, anti / syn = 1 / 1.2)
Scheme 5.
O
O
O
Li
2equiv.
n-BuLi
Me
Me
Me
NHAr
N Ar
Ot-Bu
NHAr
Ph
NH
Ph
Li
N
Ph
NBoc
DME, -78 °C
CO2t-Bu
(single diastereomer)
O
(Ar = 2-methoxyphenyl)
1d
11d (56 %, 98 %ee)
Scheme 6.
References
configurations of 2a and 2b indicate that the reaction
proceeds with a high level of retention at the inherent
chiral center (the migrating center). That is, the forma-
tion of dianionic lithium enolate by deprotonation of
a-hydrogen and racemization of a radical intermediate
such as 7A should hardly occur. As far as we know,
since no example of 1,2-Wittig rearrangement involving
the formation of a carbonyl a-radical fragment has so
far been reported, the high level of the chirality transfer
in such reaction system should be noteworthy.
1. (a) Wittig, G.; Lo¨hmann, L. Liebigs Ann. Chem. 1942, 550,
260–268. For reviews: (b) Scho¨llkopf, U. Angew. Chem. Int.
Ed. 1970, 9, 763–773; (c) Hoffmann, R. W. Angew. Chem.
Int. Ed. 1979, 18 563–572; (d) Marshall, J. A. In Compre-
hensive Organic Synthesis; Pattenden, G., Ed.; Pergamon:
London, 1991; Vol. 3, pp. 975–1014; (e) Tomooka, K.;
Nakai, T. J. Synth. Org. Chem. Jpn. 1996, 54, 1000–1008;
(f) Tomooka, K.; Yamamoto, H.; Nakai, T. Liebig Ann.
Recl. 1997, 1275–1281.
2. (a) Lansbury, P. T.; Pattison, V. A.; Sidler, J. D.; Bieber,
J. B. J. Am. Chem. Soc. 1966, 88, 78–84; (b) Scha¨fer, H.;
Scho¨llkopf, U.; Walter, D. Tetrahedron Lett. 1968, 2809–
2814; (c) Azzena, U.; Denurra, T.; Melloni, G.; Piroddi,
A. M. J. Org. Chem. 1990, 55, 5532–5535.
3. (a) Scho¨llkopf, U.; Fabian, W. Liebigs Ann. Chem. 1961,
642, 1–21; (b) Verner, E. J.; Cohen, T. J. Am. Chem. Soc.
1992, 114, 375–377; (c) Hoffmannn, R.; Bru¨ckner, R.
Chem. Ber. 1992, 125, 1957–1963; (d) Tomooka, K.;
Igarashi, T.; Nakai, T. Tetrahedron Lett. 1993, 34, 8139–
8142; (e) Tomooka, K.; Igarashi, T.; Nakai, T. Tetrahedron
1994, 50, 5927–5932.
1,2-Wittig rearrangement using an a-alkoxy carbox-
amide derivative can be applied to not only O-benzyl
ether derivatives 1a and 1b but also O-propargyl
ether derivative 1c (Scheme 5). Under the similar con-
ditions, the reaction of (S)-O-propargyllactamide 1c
(91% ee) gave the product anti-2c and syn-2c in 55%
yield, while decrease in the diasteroselectivity and the
level of chirality transfer was observed in comparison
with O-benzyl derivatives 1a and 1b (anti-2c/syn-2c=1/
1.2, syn-2c and anti-2c: 80% ee).7,10
4. (a) Yadav, J. S.; Ravishankar, R. Tetrahedron Lett. 1991,
32, 2629–2632; (b) Tomooka, K.; Yamamoto, H.; Nakai,
T. J. Am. Chem. Soc. 1996, 118, 3317–3318; (c) Maleczka,
Jr., R. E.; Geng, F. J. Am. Chem. Soc. 1998, 120,
8551–8552; (d) Tomooka, K.; Yamamoto, H.; Nakai, T.
Angew. Chem. Int. Ed. 2000, 39, 4500–4502; (e) Tomooka,
K.; Kikuchi, M.; Igawa, K.; Suzuki, M.; Keong, P.; Nakai,
T. Angew. Chem. Int. Ed. 2000, 39, 4502–4505.
An aza-version of 1,2-Wittig rearrangement with N-Boc
N-benzyl alanine derivative 1d was further investigated.
However, in this case, migration of the Boc group to
the resulting N-benzyl carbanion takes place, leading to
the isolation of 11d as a single stereoisomer without the
formation of an aza-Wittig product (aza-aldol deriva-
tive) (Scheme 6).10
5. For recent reviews: (a) Nelson, S. G. Tetrahedron: Asym-
metry 1998, 9, 357–389; (b) Mahrwald, R. Chem. Rev. 1999,
99, 1095–1120; (c) Arya, P.; Qin, H. Tetrahedron 2000, 56,
917–947.
6. General procedure of 1,2-Wittig rearrangement. Under Ar
atmosphere, to a solution of 1a (159 mg, 0.5 mmol) in THF
(3 ml) was added pentane solution of tert-BuLi (1.47 M,
1.02 ml, 1.5 mmol) at −78°C. After being stirred for 1 h
at −78°C, the reaction mixture was poured into 2% HCl
In conclusion, we have succeeded in the development of
1,2-Wittig rearrangement with chiral a-alkoxycarbox-
amides which proceeds with a high level of chirality
transfer to give optically active b-hydroxycarboxamides
(aldol derivatives). The present reaction should provide
new methodology for the synthesis of optically active
aldol derivatives from inexpensive chiral a-hydroxy
acids.