X.-J. Tang et al. / Tetrahedron Letters 54 (2013) 2669–2673
2673
O
References and notes
H
H
O
R'
O
O
1. (a) Misra, M.; Luthra, R.; Singh, K. L.; Sushil, K. In Comprehensive Natural
Products Chemistry; Barton, D. H. R., Nakanishi, K., Meth-Cohn, O., Eds.;
Pergamon: Oxford, UK, 1999; 4, p 25; (b) Busto, E.; Gotor-Fernández, V.;
Gotor, V. Chem. Rev. 2011, 111, 3998.
2. (a) Porter, E. A.; Wang, X.; Lee, H.-S.; Weisblum, B.; Gellman, S. H. Nature 2000,
404, 565; (b) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991; (c) Enantioselective
Synthesis of b-Amino Acids; Juaristi, E., Soloshonok, V. A., Eds.; Wiley-
Interscience: New York, 2005; 4.
H
O
H
O
2-
R'
2-
CO3
O
O
H
-CO3
-H2O
R'
N
R
RHN
H
RNH2
Scheme 1. Plausible mechanism for the aza-Michael addition.
3. (a) Ollevier, T.; Nadeau, E. J. Org. Chem. 2004, 69, 9292; (b) Azizi, N.; Torkiyan,
L.; Saidi, M. R. Org. Lett. 2006, 8, 2079; (c) Das, B.; Balasubramanyam, P.;
Veeranjaneyulu, B.; Reddy, G. C. Org. Chem. 2009, 74, 9505; (d) Luan, Y.; Schaus,
S. E. Org. Lett. 2011, 13, 2510.
went successful reactions with 2b to provide the corresponding
products in 83% and 87% yields, respectively, with the chirality of
amino ester moiety intact (both products ee >99%, see Supplemen-
tary data) (Table 3, entries 13 and 14).
4. For select examples of aza-Michael addition with aliphatic amines: (a) Xu, L.-
W.; Xia, C.-G. Eur. J. Org. Chem. 2005, 633; (b) Yamagiwa, N.; Qin, H.;
Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 13419; (c) Kumar, R.;
Chaudhary, P.; Nimesh, S.; Chandra, R. Green Chem. 2006, 8, 356; (d) Fustero, S.;
Jiménez, D.; Sánchez-Roselló, M.; del Pozo, C. J. Am. Chem. Soc. 2007, 129, 6700;
(e) Ranu, B. C.; Banerjee, S. Tetrahedron Lett. 2007, 48, 141; (f) Khan, A. T.;
Parvin, T.; Gazi, S.; Choudhury, L. H. Tetrahedron Lett. 2007, 48, 3805; (g) Yeom,
C.-E.; Kim, M. J.; Kim, B. M. Tetrahedron 2007, 63, 904; (h) Xu, J.-M.; Wu, Q.;
Zhang, Q.-Y.; Zhang, F.; Lin, X.-F. Eur. J. Org. Chem. 2007, 1798; (i) Das, B.;
Chowdhury, N. J. Mol. Catal. A: Chem. 2007, 263, 212; (j) You, L.; Feng, S.; An, R.;
Wang, X.-H.; Bai, D.-L. Tetrahedron Lett. 2008, 49, 5147; (k) Uddin, M. I.;
Nakano, K.; Ichikawa, Y.; Kotsuki, H. Synlett 2008, 1402; (l) Zhu, D.; Lu, M.;
Chua, P. J.; Tan, B.; Wang, F.; Yang, X.; Zhong, G. Org. Lett. 2008, 10, 4585; (m)
Kantam, M. L.; Laha, S.; Yadav, J.; Jha, S. Tetrahedron Lett. 2009, 50, 4467; (n)
Dhake, K. P.; Tambade, P. J.; Singhal, R. S.; Bhanage, B. M. Tetrahedron Lett. 2010,
51, 4455; (o) Rajabi, F.; Razavi, S.; Luque, R. Green Chem. 2010, 12, 786; (p) Yang,
H.-M.; Li, L.; Li, F.; Jiang, K.-Z.; Shang, J.-Y.; Lai, G.-Q.; Xu, L.-W. Org. Lett. 2011,
13, 6508.
5. For select examples of aza-Michael addition with anilines: (a) Munro-Leighton,
C.; Blue, E. D.; Gunnoe, T. B. J. Am. Chem. Soc. 2006, 128, 1446; (b) Fetterly, B. M.;
Jana, N. K.; Verkade, J. G. Tetrahedron 2006, 62, 440; (c) Munro-Leighton, C.;
Delp, S. A.; Blue, E. D.; Gunnoe, T. B. Organometallics 2007, 26, 1483; (d) Ying, A.-
G.; Liu, L.; Wu, G.-F.; Chen, G.; Chen, X.-Z.; Ye, W.-D. Tetrahedron Lett. 2009, 50,
1653; (e) Ai, X.; Wang, X.; Liu, J.-M.; Ge, Z.-M.; Cheng, T.-M.; Li, R.-T.
Tetrahedron 2010, 66, 5373; (f) Roy, S. R.; Chakraborti, A. K. Org. Lett. 2010, 12,
3866; (g) Kang, Q.; Zhang, Y. Org. Biomol. Chem. 2011, 9, 6715; (h) Jiang, R.; Li,
D.-H.; Jiang, J.; Xu, X.-P.; Chen, T.; Ji, S.-J. Tetrahedron 2011, 67, 3631.
6. For select examples of aza-Michael addition with carbamates: (a) Wabnitz, T.
C.; Spencer, J. B. Org. Lett. 2003, 5, 2141; (b) Yang, L.; Xu, L.-W.; Xia, C.-G.
Tetrahedron Lett. 2007, 48, 1599; (c) Lin, Y.-D.; Kao, J.-Q.; Chen, C.-T. Org. Lett.
2007, 9, 5195; (d) Smitha, G.; Reddy, C. S. Catal. Commun. 2007, 8, 434; (e) Lee,
J.; Kim, M.-H.; Jew, S.-S.; Park, H.-G.; Jeong, B.-S. Chem. Commun. 1932, 2008.
7. For select examples of intramolecular aza-Michael addition: (a) Bandini, M.;
Eichholzer, A.; Monari, M.; Piccinelli, F.; Umani-Ronchi, A. Eur. J. Org. Chem.
2007, 2917; (b) Qian, C.; Xu, J.-M.; Wu, Q.; Lv, D.-S.; Lin, X.-F. Tetrahedron Lett.
2007, 48, 6100; (c) Yang, Y.; Xiang, D.-X.; Zhao, X.-L.; Liang, Y.-J.; Huang, J.;
Dong, D.-W. Tetrahedron 2008, 64, 4959.
Finally, we studied the effect of electronic and structural varia-
tions to the enone by using aniline as Michael donor (Table 4).
Gratifyingly, enones with various electronic properties and struc-
tural formations (cyclic or linear, terminal or internal) could pro-
ceed efficiently to produce the corresponding aza-Michael
addition products at room temperature in good to excellent yields
(80–94%) (Table 4, entries 1–6). Acrylonitrile also participated in
the conjugate addition (Table 4, entry 7). Anilines substituted by
electron-withdrawing group or electron-donating group reacted
smoothly with EVK (2c) to give the corresponding addition prod-
ucts in 91% and 93% yields, respectively (Table 4, entries 8 and 9).
Our current understanding of the catalytic aza-Michael reaction
is illustrated in Scheme 1. Initially, the amine adds to the Michael
acceptor and carbonate ion in the transformation acts as a proton
shuttle, using hydrogen bonding to facilitate transfer of the proton
from nitrogen to oxygen.5b Water plays an important role here by
pre-associating with the carbonyl group, and consequently acceler-
ates the addition step.
In summary, we have developed an effective aza-Michael reac-
tion promoted by aqueous sodium carbonate solution. The reaction
shows complete mono-alkylation selectivity and complete chiral-
ity retention for chiral amino esters. With a broad substrate scope,
a well-common catalyst and simple operation, the catalytic ap-
proach provides a facile, practicable, economical, and environmen-
tally benign method for the synthesis of b-amino carbonyl
compounds which are ubiquitous in nature. The method should
have many applications in organic and medical chemistry. Detailed
mechanistic investigations and applications to the synthesis of bio-
logically active molecular complexes are currently underway.
8. (a) De, K.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Org. Chem. 2009, 74, 6260;
(b) Phippen, C. B. W.; Beattie, J. K.; McErlean, C. S. P. Chem. Commun. 2010, 46,
8234.
9. Surendra, K.; Krishnaveni, N. S.; Sridhar, R.; Rao, K. R. Tetrahedron Lett. 2006, 47,
2125.
10. (a) Amore, K. M.; Leadbeater, N. E.; Miller, T. A.; Schmink, J. R. Tetrahedron Lett.
2006, 47, 8583; (b) Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2007, 48,
8735.
Acknowledgments
11. Bhanushali, M. J.; Nandurkar, N. S.; Jagtap, S. R.; Bhanage, B. M. Catal. Commun.
2008, 9, 1189.
This research was supported by the National Natural Science
Foundation of China (NSFC-20872183, 20972126, 21272185), the
Program for New Century Excellent Talents in University of the
Ministry of Education China (NCET-10-0937), and the Education
Department of Shaanxi Provincial Government (09JK776).
12. (a) Sham, H. L.; Betebenner, D. A.; Herrin, T.; Kumar, G.; Saldivar, A.;
Vasavanonda, S.; Molla, A.; Kempf, D. J.; Plattner, J. J.; Norbeck, D. W. Bioorg.
Med. Chem. Lett. 2001, 11, 1351; (b) Lee, J. H.; Lee, K. S.; Kang, Y. K.; Yoo, K. H.;
Shin, K. J.; Kim, D. C.; Kong, J. Y.; Lee, Y.; Lee, S. J.; Kim, D. J. Bioorg. Med. Chem.
Lett. 2003, 13, 4399; For intramolecular aza-Michael reaction with chiral amino
esters: (c) Daly, M.; Cant, A. A.; Fowler, L. S.; Simpson, G. L.; Senn, H. M.;
Sutherland, A. J. Org. Chem. 2012, 77, 10001.
13. (a) Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2005, 44, 3275; (b) Brotzel, F.; Chu, Y. C.; Mayr, H. J. Org.
Chem. 2007, 72, 3679; (c) Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725; (d)
Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302.
Supplementary data
Supplementary data associated with this article can be found, in