Journal of the American Chemical Society
ARTICLE
ꢁ
(2) (a) Amabilino, D. B.; Ashton, P. R.; Bdlohradskꢀy, M.; Raymo,
Zayed, J. M.; Scherman, O. A. Chem. Sci. 2011, 2, 279–286. and,
(f) supramolecular gold nanoparticle-polymer composites, Coulston,
R. J.; Jones, S. T.; Lee, T. C.; Appel, E. A.; Scherman, O. A. Chem.
Commun. 2011, 47, 164–166. γ-Cyclodextrin and some crown ethers
can also bind two substrates within their cavities, see: (g) Ueno, A.;
Takahashi, K.; Osa, T. J. Chem. Soc., Chem. Commun. 1980, 921–922.
(h) Herrmann, W.; Wehrle, S.; Wenz, G. Chem. Commun.
1997, 1709–1710. (i) Herrmann, W.; Schneider, M.; Wenz, G. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2511–2514. (j) Roa, K. S. S. P.; Hubig,
S. M.; Moorthy, J. N.; Kochi, J. K. J. Org. Chem. 1999, 64, 8098–8104.
(k) Chiu, S.-H.; Pease, A. R.; Stoddart, J. F.; White, A. J. P.; Williams,
D. J. Angew. Chem., Int. Ed. 2002, 41, 270–274.
(6) The ternary supramolecular complexes cited in ref 5 are all
thermodynamically stable with respect to their decomplexed compo-
nents, but kinetically labile in solution (the guests undergo exchange
with others in the bulk). In contrast, [3]rotaxane 5—which is a molecule
not a supramolecular complex (Hannam, J. S.; Lacy, S. M.; Leigh, D. A.;
Saiz, C. G.; Slawin, A. M. Z.; Stitchell, S. G. Angew. Chem., Int. Ed. 2004,
43, 3260–3264)—is kinetically stable to dethreading but, with no signi-
ficant favorable interactions between the components, certainly thermo-
dynamically unstable with respect to its non-interlocked components.
(7) Saito, S.; Nakazono, K.; Takahashi, E. J. Org. Chem. 2006, 71,
7477–7480.
(8) (a) Aucagne, V.; H€anni, K. D.; Leigh, D. A.; Lusby, P. J.; Walker,
D. B. J. Am. Chem. Soc. 2006, 128, 2186–2187. (b) Saito, S.; Takahashi,
E.; Nakazono, K. Org. Lett. 2006, 8, 5133–5136. (c) Crowley, J. D.;
H€anni, K. D.; Lee, A.-L.; Leigh, D. A. J. Am. Chem. Soc. 2007,
129, 12092–12093. (d) Aucagne, V.; Bernꢀa, J.; Crowley, J. D.; Goldup,
S. M.; H€anni, K. D.; Leigh, D. A.; Lusby, P. J.; Ronaldson, V. E.; Slawin,
A. M. Z.; Viterisi, A.; Walker, D. B. J. Am. Chem. Soc. 2007,
129, 11950–11963. (e) Bernꢀa, J.; Crowley, J. D.; Goldup, S. M.; H€anni,
K. D.; Lee, A. L.; Leigh, D. A. Angew. Chem., Int. Ed. 2007,
46, 5709–5713. (f) Goldup, S. M.; Leigh, D. A.; Lusby, P. J.; McBurney,
R. T.; Slawin, A. M. Z. Angew. Chem., Int. Ed. 2008, 47, 3381–3384.
(g) Bernꢀa, J.; Goldup, S. M.; Lee, A.-L.; Leigh, D. A.; Symes, M. D.;
Teobaldi, G.; Zerbetto, F. Angew. Chem., Int. Ed. 2008, 47, 4392–4396.
(h) Sato, Y.; Yamasaki, R.; Saito, S. Angew. Chem., Int. Ed. 2008,
48, 504–507. (i) Crowley, J. D.; Goldup, S. M.; Lee, A. L.; Leigh,
D. A.; McBurney, R. T. Chem. Soc. Rev. 2009, 38, 1530–1541.
(j) Goldup, S. M.; Leigh, D. A.; Long, T.; McGonigal, P. R.; Symes,
M. D.; Wu, J. J. Am. Chem. Soc. 2009, 131, 15924–15929. (k) Goldup,
S. M.; Leigh, D. A.; McGonigal, P. R.; Ronaldson, V. E.; Slawin, A. M. Z.
J. Am. Chem. Soc. 2010, 132, 315–320. (l) Crowley, J. D.; H€anni, K. D.;
Leigh, D. A.; Slawin, A. M. Z. J. Am. Chem. Soc. 2010, 132, 5309–5314.
(m) Crowley, J. D.; Goldup, S. M.; Gowans, N. D.; Leigh, D. A.;
Ronaldson, V. E.; Slawin, A. M. Z. J. Am. Chem. Soc. 2010,
132, 6243–6248. (n) Goldup, S. M.; Leigh, D. A.; McBurney, R. T.;
McGonigal, P. R.; Plant, A. Chem. Sci. 2010, 1, 383–386. (o) Lahlali, H.;
Jobe, K.; Watkinson, M.; Goldup, S. M. Angew. Chem., Int. Ed. 2011,
51, 4151–4155.
F. M.; Stoddart, J. F. J. Chem. Soc., Chem. Commun. 1995, 747–750. (b)
Amabilino, D. B.; Ashton, P. R.; Bdlohradskꢀy, M.; Raymo, F. M.;
ꢁ
Stoddart, J. F. J. Chem. Soc., Chem. Commun. 1995, 751–753.
(c) Amabilino, D. B.; Ashton, P. R.; Balzani, V.; Brown, C. L.; Credi,
A.; Frꢀechet, J. M. J.; Leon, J. W.; Raymo, F. M.; Spencer, N.; Stoddart,
J. F.; Venturi, M. J. Am. Chem. Soc. 1996, 118, 12012–12020.
(d) Solladiꢀe, N.; Chambron, J. C.; Dietrich-Buchecker, C. O.; Sauvage,
J.-P. Angew. Chem., Int. Ed. 1996, 35, 906–909. (e) Amabilino, D. B.;
ꢁ
Asakawa, M.; Ashton, P. R.; Ballardini, R.; Balzani, V.; Bdlohradskꢀy, M.;
Credi, A.; Higuchi, M.; Raymo, F. M.; Shimizu, T.; Stoddart, J. F.;
Venturi, M.; Yase, K. New J. Chem. 1998, 22, 959–972. (f) Solladiꢀe, N.;
Chambron, J. C.; Sauvage, J.-P. J. Am. Chem. Soc. 1999, 121, 3684–3692.
(g) Parham, A. H.; Schmieder, R.; V€ogtle, F. Synlett 1999, 1887–1890.
(h) Watanabe, N.; Yagi, T.; Kihara, N.; Takata, T. Chem. Commun.
2002, 2720–2721. (i) Tuncel, D.; Steinke, J. H. G. Chem. Commun.
ꢁ
2002, 496–497. (j) Dichtel, W. R.; Miljaniꢀc, O. S.; Spruell, J. M.; Heath,
J. R.; Stoddart, J. F. J. Am. Chem. Soc. 2006, 128, 10388–10390.
(k) Tuncel, D.; Cindir, N.; Koldemir, U. J. Inclusion Phenom. Macrocyclic
Chem. 2006, 55, 373–380. (l) Wu, J.; Leung, K. C. F.; Stoddart, J. F. Proc.
Natl. Acad. Sci. U.S.A. 2007, 104, 17266–17271. (m) Taira, T.; Suzaki, Y.;
Osakada, K. Chem. Asian J. 2008, 3, 895–902. (n) Frey, J.; Tock, C.;
Collin, J. P.; Heitz, V.; Sauvage, J.-P. J. Am. Chem. Soc. 2008,
130, 4592–4593. (o) Li, S. J.; Liu, M.; Zhang, J. Q.; Zheng, B.; Wen,
X. H.; Li, N.; Huang, F. H. Eur. J. Org. Chem. 2008, 6128–6133.
(p) Marois, J.-S.; Cantin, K.; Desmarais, A.; Morin, J.-F. Org. Lett.
2008, 10, 33–36. (q) Collin, J. P.; Frey, J.; Heitz, V.; Sauvage, J. P.; Tock,
C.; Allouche, L. J. Am. Chem. Soc. 2009, 131, 5609–5620. (r) Wang, J. Y.;
Han, J. M.; Yan, J.; Ma, Y. G.; Pei, J. Chem.—Eur. J. 2009, 15, 3585–3594.
(s) Iwamoto, H.; Yawata, Y.; Fukazawa, Y.; Haino, T. Chem. Lett. 2009,
39, 24–25. (t) Belowich, M. E.; Valente, C.; Stoddart, J. F. Angew. Chem.,
Int. Ed. 2010, 49, 7208–7212. (u) Li, S.; Zheng, B.; Chen, J.; Dong, S.;
Ma, Z.; Huang, F.; Gibson, H. W. J. Polym. Sci., Part A: Polym. Chem.
2010, 48, 4067–4073. (v) Yin, J.; Dasgupta, S.; Wu, J. Org. Lett. 2010,
12, 1712–1715. (w) Yin, J.; Chi, C.; Wu, J. Org. Biomol. Chem. 2010,
8, 2594–2599. (x) Collin, J.-P.; Durot, S.; Keller, M.; Sauvage, J.-P.;
Trolez, Y.; Cetina, M.; Rissanen, K. Chem.—Eur. J. 2011, 17, 947–957.
(y) Basu, S.; Coskun, A.; Friedman, D. C.; Olson, M. A.; Benítez, D.;
Tkatchouk, E.; Barin, G.; Yang, J.; Fahrenbach, A. C.; Goddard, W. A.;
Stoddart, J. F. Chem.—Eur. J. 2011, 17, 2107–2119. (z) Kohsaka, Y.;
Nakazono, K.; Koyama, Y.; Asai, S.; Takata, T. Angew, Chem. Int. Ed.
2011, 50, 4872–4875.
(3) For recent reviews on polymeric rotaxanes with multiple rings
encircling linear or branched threads, see: (a) Harada, A.; Hashidzume,
A.; Yamaguchi, H.; Takashima, Y. Chem. Rev. 2009, 109, 5974–6023.
(b) Fang, L.; Olson, M. A.; Benítez, D.; Tkatchouk, E.; Goddard, W. A.;
Stoddart, J. F. Chem. Soc. Rev. 2010, 39, 17–29. (c) Leung, K. C.-F.; Lau,
K.-N. Polym. Chem. 2010, 1, 988–1000.
(4) (a) Klotz, E. J. F.; Claridge, T. D. W.; Anderson, H. L. J. Am.
Chem. Soc. 2006, 128, 15374–15375. (b) Prikhod’ko, A. I.; Durola, F.;
Sauvage, J.-P. J. Am. Chem. Soc. 2008, 130, 448–449. (c) Prikhod’ko, A.;
Sauvage, J.-P. J. Am. Chem. Soc. 2009, 131, 6794–6807. (d) Lee, C. F.;
Leigh, D. A.; Pritchard, R. G.; Schultz, D.; Teat, S. J.; Timco, G. A.;
Winpenny, R. E. P. Nature 2009, 458, 314–318. (e) Ackermann, D.;
Schmidt, T. L.; Hannam, J. S.; Purohit, C. S.; Heckel, A.; Famulok, M.
Nat. Nanotechnol. 2010, 5, 436–442.
(9) For [n]rotaxanes synthesized using fewer than n-1 template
sites, see: (a) Fuller, A. M. L.; Leigh, D. A.; Lusby, P. J. Angew. Chem., Int.
Ed. 2007, 46, 5015–5019. (b) Fuller, A.-M. L.; Leigh, D. A.; Lusby, P. J.
J. Am. Chem. Soc. 2010, 132, 4954–4959.
(10) (a) Prinsell, M. R.; Everson, D. A.; Weix, D. J. Chem. Commun.
2010, 46, 5743–5745. (b) Kim, H.; Lee, C. Org. Lett. 2011,
13, 2050–2053. (c) Yu, X.; Yang, T.; Wang, S.; Xu, H.; Gong, H. Org.
Lett. 2011, 13, 2138–2141.
(5) Cucurbit[8]uril can form pseudo[3]rotaxane-like ternary supra-
molecular complexes with two guests bound within its cavity, see:
(a) Kim, J.; Jung, I.; Kim, S.; Lee, E.; Kang, J.; Sakamoto, S.; Yamaguchi,
K.; Kim, K. J. Am. Chem. Soc. 2000, 122, 540–541. This phenomenon
has been exploited to make: (b) supramolecular “necklaces”: Ko, Y.;
Kim, K.; Kang, J.; Chun, H.; Lee, J.; Sakamoto, S.; Yamaguchi, K.;
Fettinger, J.; Kim, K. J. Am. Chem. Soc. 2004, 126, 1932–1933. (c) supra-
molecular block co-polymers: Rauwald, U.; Scherman, O. A. Angew.
Chem., Int. Ed. 2008, 47, 3950–3953. and (d) cross-linked networks:
Appel, E. A.; Biedermann, F.; Rauwald, U.; Jones, S. T.; Zayed, J. M.;
Scherman, O. A. J. Am. Chem. Soc. 2010, 132, 14251–14260. (e) supra-
molecular protein-polymer conjugates, Biedermann, F.; Rauwald, U.;
(11) In general, free 2,20:60,200-terpyridine ligands preferentially
adopt a transꢀtrans geometry. When acting as a tridentate ligand,
rotation around the 2,20- and 60,200 bonds occurs to give the coordinating
cisꢀcis geometry, see: Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Danesi,
A.; Faggi, E.; Giorgi, C.; Santarelli, S.; Valtancoli, B. Coord. Chem. Rev.
2008, 252, 1052–1068.
(12) An optimized 46% yield of [2]rotaxane was reported in ref 8n
using the bisoxazoline macrocycle and 2.2 equiv of alkyl bromide at
room temperature in DMF. In the present study with the terpyridylꢀ
macrocycle (1), the use of a 1:1 mixture of THFꢀNMP enabled all of
12302
dx.doi.org/10.1021/ja205167e |J. Am. Chem. Soc. 2011, 133, 12298–12303