RSC Advances
Paper
A possible mechanism of the Mannich-type reaction in the 12 J. M. Clemente-Juan and E. Coronado, Coord. Chem. Rev.,
presence of HybPOM/HPW12 and Go/Fe3O4/HybPOM/HPW12 as 1999, 193–195, 361.
Bronsted acid catalysts is proposed (Scheme 3). The reaction 13 D. L. Long, P. Kogerler, L. J. Farrugia and L. Cronin, Dalton
proceeded typically through the imine formation of the alde- Trans., 2005, 1372.
hyde and amine, protonation of the imine, and the attack of the 14 D. L. Long, R. Tsunashima and L. Cronin, Angew. Chem., Int.
enol derived from the ketone to the protonated imine, leading
to the formation of Mannich products.
Ed., 2010, 49, 1736.
15 D. Volkmer, A. Du Chesne, D. G. Kurth, H. Schnablegger,
¨
As shown in Scheme 4, an intermediate are formed via
P. Lehmann, M. J. Koop and A. Muller, J. Am. Chem. Soc.,
hydrogen bonds formation among Go/Fe3O4/HybPOM/HPW12
,
2000, 122, 1995.
the imine and the enol form of cyclohexanone. In the inter- 16 D. W. Fan, X. F. Jia, P. Q. Tang, J. C. Hao and T. B. Liu, Angew.
mediate the aryl groups of aldimine and the methylene groups Chem., Int. Ed., 2007, 46, 3342.
of cyclohexanone would be anti to each other and there would 17 R. Neumann, Prog. Inorg. Chem., 1998, 47, 317.
be less steric repulsion. Therefore, the most stable transition 18 X. M. Yan, J. H. Lei, D. Liu, Y. C. Wu and W. Liu, Mater. Res.
state would produce the anti isomer.52
Bull., 2007, 42, 1905.
19 N. Dubey, S. S. Rayalu, N. K. Labhsetwar and S. Devotta, Int. J.
Hydrogen Energy, 2008, 33, 5958.
20 M. A. Alibeik, Z. Zaghaghi and I. M. Baltork, J. Chin. Chem.
Soc., 2008, 55, 1.
4. Conclusion
The new nanoparticle catalysts were synthesized by the immo-
bilization of H3PW12O40 on the surface of H6Cu2[PPDA]6[SiW9- 21 (a) T. Okuhara, N. Mizuno and M. Misono, Appl. Catal., A,
Cu3O37]$12H2O (HybPOM) (PPDA
organic–inorganic hybrid polyoxometalates and Go/Fe3O4/
¼
p-phenylenediamine)
2001, 222, 63; (b) E. Raee, S. Eavani, S. Rashidzadeh and
M. Joshaghani, Inorg. Chim. Acta, 2009, 362, 3555.
HybPOM nanocomposite. The IR spectroscopy as well as X-ray 22 E. Raee, M. Joshaghani, S. Eavani and S. Rashidzadeh,
powder diffraction conrmed immobilization of H3PW12O40 Green Chem., 2008, 10, 982.
on the supports. Potentiometric titration results show that the 23 Perspectives in Catalysis, ed. Y. Ono, J. M. Thomas and K. I.
new nanocatalysts possessing strong and sufficient acidic sites Zamaraev, Blackwell, London, 1992, p. 341.
is responsible for excellent conversion values of products. The 24 I. V. Kozhevnikov and K. I. Matveev, Appl. Catal., 1983, 5, 135.
nanocatalysts catalyzed one-pot three-component Mannich- 25 M. Misono and N. Noriji, Appl. Catal., 1990, 64, 1.
type reactions of aldehydes, amines and ketones in water at 26 Y. Izumi, R. Hasebe and K. Urabe, J. Catal., 1983, 84, 402.
room temperature and the catalysts were re-used at least ve 27 H. Soeda, T. Okuhara and M. Misono, Chem. Lett., 1994, 909.
times without any loss of their high catalytic activity.
28 M. A. Schwegler, H. van Bekkum and N. Munck, Appl. Catal.,
1991, 74, 191.
29 M. A. Wahab, I. I. Kim and C.-S. Ha, Microporous Mesoporous
Mater., 2004, 69, 19.
Acknowledgements
We gratefully acknowledge the Research Council of the 30 J. B. Mioc, R. Z. Dimitrijevi, M. Davidovic, Z. P. Nedic,
University of Kurdistan for supporting this work.
M. M. Mitrovic and P. H. Colomban, J. Mater. Sci., 1994,
29, 3705.
31 M. Masteri-Farahania, J. Movassagh, F. Taghavi, P. Eghbali
and F. Salimi, Chem. Eng. J., 2012, 184, 342.
References
1 D. L. Long, E. Burkholder and L. Cronin, Chem. Soc. Rev., 32 R. Tayebee, M. M. Amini, H. Rostamian and A. Aliakbari,
2007, 36. Dalton Trans., 2014, 43, 1550.
2 M. T. Pope and A. Muller, Angew. Chem., Int. Ed. Engl., 1991, 33 T. A. Zillillah and Z. Li Ngu, Green Chem., 2014, 16, 1202.
¨
30, 34.
34 R. Khoshnavazi, L. Bahrami and F. Havasi, RSC Adv., 2016, 6,
¨
3 P. Kogerler and L. Cronin, Angew. Chem., Int. Ed., 2005, 44,
100962.
¨
844.
35 S. Shyles, V. Schunemann and W. R. Thiel, Angew. Chem., Int.
4 T. Yamase, Chem. Rev., 1998, 98, 307.
Ed., 2010, 49, 3428.
5 J. T. Rhule, W. A. Neiwert, K. I. Hardcastle, B. T. Do and 36 M. B. Gawande, A. K. Rathi, P. S. Branco and R. S. Varma,
C. L. Hill, J. Am. Chem. Soc., 2001, 123, 12101. Appl. Sci., 2013, 3, 656.
6 M. V. Vasylyev and R. Neumann, J. Am. Chem. Soc., 2004, 126, 37 A. L. Simplıcio, J. M. Clancy and J. F. Gilmer, Int. J. Pharm.,
884. 2007, 336, 208.
7 N. Mizuno, K. Yamaguchi and K. Kamata, Coord. Chem. Rev., 38 I. V. Kozhevnikov, in Catalysis for Fine Chemical Synthesis,
´
2005, 249, 1944.
8 N. Mizuno and M. Misono, Chem. Rev., 1998, 98, 199.
9 M. Sadakane and E. Steckhan, Chem. Rev., 1998, 98, 219.
Catalysis by Polyoxometalates 2, ed. E. Derouane, Wiley,
New York, 2002.
39 J. Li, S. Zhang, C. Chen, G. Zhao, X. Yang, J. Li and X. Wang,
ACS Appl. Mater. Interfaces, 2012, 4, 4991.
¨
¨
10 A. Muller, P. Kogerler and A. W. M. Dress, Coord. Chem. Rev.,
2001, 222, 193.
40 B. Shen, W. Zhai, M. Tao, J. Ling and W. Zheng, ACS Appl.
Mater. Interfaces, 2013, 5, 11383.
41 F. Shahbazi and K. Amani, Catal. Commun., 2014, 55, 57.
11 T. Yamase, K. Fukaya, H. Nojiri and Y. Ohshima, Inorg.
Chem., 2006, 45, 7698.
11520 | RSC Adv., 2017, 7, 11510–11521
This journal is © The Royal Society of Chemistry 2017