Journal of the American Chemical Society
Page 4 of 6
the photoluminescence and electroluminescence properties of lumino-
gens based on phosphindole oxide. J. Mater. Chem. C 2017, 5, 1836-
1842. (b) Yuan, C.; Saito, S.; Camacho, C.; Kowalczyk, T.; Irle, S.;
Yamaguchi, S. Hybridization of a flexible cyclooctatetraene core and
rigid aceneimide wings for multiluminescent flapping systems.
Chem. Eur. J. 2014, 20, 2193-2200. (c) Shen, P.; Zhuang, Z.; Zhao, Z.;
Tang, B. Z. AIEgens based on main group heterocycles. J. Mater.
Chem. C 2018, 6, 11835-11852. (d) Han, T.; Zhang, Y.; Feng, X.; Lin,
Z.; Tong, B.; Shi, J.; Zhi, J.; Dong, Y. Reversible and hydrogen bond-
ing-assisted piezochromic luminescence for solid-state tetraaryl-buta-
1,3-diene. Chem. Commun. 2013, 49, 7049-7051. (e) Guo, J.; Hu, S.;
Luo, W.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z. A novel aggregation-
induced emission platform from 2,3-diphenylbenzo[b]thiophene S, S-
dioxide. Chem. Commun. 2017, 53, 1463-1466. (f) Chen, M.; Li, L.;
Nie, H.; Tong, J.; Yan, L.; Xu, B.; Sun, J. Z.; Tian, W.; Zhao, Z.; Qin,
A.; Tang, B. Z. Tetraphenylpyrazine-based AIEgens: facile preparation
and tunable light emission. Chem. Sci. 2015, 6, 1932-1937. (g) Cai, Y.;
Qin, A.; Tang, B. Z. Siloles in optoelectronic devices. J. Mater. Chem.
C 2017, 5, 7375-7389. (h) Bu, F.; Wang, E.; Peng, Q.; Hu, R.; Qin, A.;
Zhao, Z.; Tang, B. Z. Structural and theoretical insights into the AIE
attributes of phosphindole oxide: the balance between rigidity and flex-
ibility. Chem. Eur. J. 2015, 21, 4440-4449.
(5) Xie, S.; Wong, A. Y. H.; Chen, S.; Tang, B. Z. Fluorogenic detec-
tion and characterization of proteins by aggregation-induced emission
methods. Chem. Eur. J. 2019, 25, 5824-5847.
(6) Zhao, Z.; Wang, Z.; Lu, P.; Chan, C. Y.; Liu, D.; Lam, J. W.; Sung,
H. H.; Williams, I. D.; Ma, Y.; Tang, B. Z. Structural modulation of
solid-state emission of 2,5-bis(trialkylsilylethynyl)-3,4-diphen-
ylsiloles. Angew. Chem. Int. Ed. 2009, 48, 7608-7611.
(7) (a) Chen, Y.; Lam, J. W. Y.; Kwok, R. T. K.; Liu, B.; Tang, B. Z.
Aggregation-induced emission: fundamental understanding and future
developments. Mater. Horiz. 2019, 6, 428-433. (b) Crespo-Otero, R.;
Li, Q.; Blancafort, L. Exploring potential energy surfaces for aggrega-
tion-induced emission−from solution to crystal. Chem. Asian J. 2019,
14, 700-714. (c) Zhang, T.; Peng, Q.; Quan, C.; Nie, H.; Niu, Y.; Xie,
Y.; Zhao, Z.; Tang, B. Z.; Shuai, Z. Using the isotope effect to probe
an aggregation induced emission mechanism: theoretical prediction
and experimental validation. Chem. Sci. 2016, 7, 5573-5580. (d) Tian,
G.; Sun, D.; Zhang, Y.; Yu, X. Franck–condon blockade and aggrega-
tion-modulated conductance in molecular devices using aggregation-
induced emission-active molecules. Angew. Chem. Int. Ed. 2019, 58,
5951-5956. (e) Kokado, K.; Sada, K. Consideration of molecular struc-
ture in the excited state to design new luminogens with aggregation-
induced emission. Angew. Chem. Int. Ed. 2019, DOI:
10.1002/anie.201814462.
(8) Kokado, K.; Machida, T.; Iwasa, T.; Taketsugu, T.; Sada, K. Twist
of C═C bond plays a crucial role in the quenching of AIE-active tetra-
phenylethene derivatives in solution. J. Phys. Chem. C 2017, 122, 245-
251.
(9) Shustova, N. B.; Ong, T. C.; Cozzolino A. F.; Michaelis, V. K.;
Griffin, R. G.; Dinca, M. Phenyl ring dynamics in a tetraphenyleth-
ylene-bridged metal–organic framework: implications for the mecha-
nism of aggregation-induced emission. J. Am. Chem. Soc. 2012, 134,
15061−15070.
(10) Sturala, J.; Etherington, M. K.; Bismillah, A. N.; Higginbotham,
H. F.; Trewby, W.; Aguilar, J. A.; Bromley, E. H. C.; Avestro, A.-J.;
Monkman, A. P.; McGonigal, P. R. Excited-state aromatic interactions
in the aggregation-induced emission of molecular rotors. J. Am. Chem.
Soc. 2017, 139, 17882-17889. (b) Zhang H, Zheng X, Xie N, He, Z.;
Liu, J.; Leung, N. L. C.; Niu, Y.; Huang, X.; Wong, K. S.; Kwok, R. T.
K.; Sung, H. H. Y.; Williams, I. D.; Qin, A.; Lam, J. W. Y.; Tang, B.
Z. Why do simple molecules with “isolated” phenyl rings emit visible
light? J. Am. Chem. Soc. 2017, 139, 16264-16272.
(11) (a) Le Bras, L.; Adamo, C.; Perrier, A. Modeling the modulation
of emission behavior in E/Z isomers of dipyrrolyldiphenylethene: from
molecules to nanoaggregates. J. Phys. Chem. C 2017, 121, 25603-
25616. (b) Yang, Z.; Qin, W.; Leung, N. L. C.; Arseneault, M.; Lam, J.
W. Y.; Liang, G.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. A mech-
anistic study of AIE processes of TPE luminogens: intramolecular ro-
tation vs. configurational isomerization. J. Mater. Chem. C 2016, 4, 99-
107.
1
2
3
4
5
6
7
8
Figure 4. Mitigation of the PC activity in SIP-2 leading to loss of
the AIE characteristics.
9
In summary, by simply merging a DPE moiety with a spiro-
scaffold, we introduced a new class of AIEgens (DPI and SIPs)
with strong deep-blue emission in the solid state. We disclosed a
dominant role of the photochemical cyclization in the non-radiative
pathways in dilute solutions, and the suppression of the PC is bound
to the boosted emission in the solid state. During the structural
modulation of PL properties, the unique spiro functionalities are
highlighted, by steric, electronic and other effects on the PC
activity, leading to ultrahigh emission efficiency with a good
control on the color shift. The PC-engaged working mechanism for
AIE which has been argued for TPEs, might work for other
unprecedent AIEgens and lead to the design of fluorescent
materials with enhanced performance and applicability.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information.
The Supporting Information is available free of charge on
the ACS Publications website.
Synthesis description, characterization details
AUTHOR INFORMATION
Corresponding Author
Author Contributions
#These authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
The authors thank the National Natural Science Foundation
of China (51573040), Hunan Provincial NSFC
(2018JJ1008).
REFERENCES
(1) (a) Ostroverkhova, O. Organic optoelectronic materials: mecha-
nisms and applications. Chem. Rev. 2016, 116, 13279-13412. (b) Terai,
T.; Nagano, T. Fluorescent probes for bioimaging applications. Curr.
Opin. Chem. Biol. 2008, 12, 515-521.
(2) Lakowicz, J. R. Principles of Fluorescence Spectroscopy. 3rd ed.;
Springer: New York, 2006.
(3) (a) He, Z.; Ke, C.; Tang, B. Z. Journey of aggregation-induced
emission research. ACS Omega 2018, 3, 3267-3277. (b) Mei, J.; Leung,
N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emis-
sion: together we shine, united we soar! Chem. Rev. 2015, 115, 11718-
940.
(4) (a) Zhuang, Z.; Bu, F.; Luo, W.; Peng, H.; Chen, S.; Hu, R.; Qin,
A.; Zhao, Z.; Tang, B. Z. Steric, conjugation and electronic impacts on
ACS Paragon Plus Environment