P. Gigler et al. / Journal of Catalysis 295 (2012) 1–14
13
allyl compound (e.g. allyl chloride) by choosing the right catalyst
for a specific application. For example, the reduced formation of
the byproducts in case of the hydrosilylation of allyl chloride with
trichlorosilane would require an electron-rich catalyst, while for
the same reaction with chlorodimethylsilane, the Karstedt catalyst
is expected to give the better results. Alternatively, by choosing the
right stoichiometry, that is, avoiding an excess of silane, a higher
selectivity could also be achieved, as shown for the Karstedt cata-
lyzed hydrosilylation of allyl chloride with trichlorosilane in
Section 3.1.2.
and Dr. Dennis Troegel (Wacker Chemie AG) for helpful discus-
sions. The Leibniz Rechenzentrum (LRZ) of the Bavarian Academy
of Sciences is acknowledged for providing the necessary computing
time on their Linux cluster farms.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
3.3.2. Insertion reaction
References
The second selectivity-determining step within the catalytic cy-
cle is represented by the insertion of the olefin into the metal-hy-
dride bond. While a 1,2-addition leads to the desired product, the
2,1-addition product is unstable and decomposes to the observed
byproducts. The different regioselectivity of this reaction can be
attributed to the similar polarities of the olefinic carbon atoms,
as the DFT calculations confirm.
Therefore, the computational data of the H-transfer from the
platinum center to either the terminal or the internal position were
compared. From a kinetic point of view, there is no significant dif-
ference comparing the energy barriers for the two possible inser-
tion steps. Thermodynamically, the 2,1-insertion product is
preferred, because of an additional Pt–Cl contact, initiating the
subsequent Cl transfer discussed above.
[1] B. Marciniec, Hydrosilylation: A Comprehensive Review on Recent Advances,
Springer, London, 2009.
[2] B. Marciniec, Comprehensive Handbook on Hydrosilylation, Pergamon Press,
Oxford, 1992.
[3] B. Marciniec, in: B. Cornils, W.A. Herrmann (Eds.), Applied Homogeneous
Catalysis with Organometallic Compounds, Wiley-VCH, Weinheim, 2002.
[4] B. Marciniec, Silicon Chem. 1 (2002) 155–174.
[5] B. Marciniec, in: B. Cornils, W.A. Herrmann (Eds.), Applied Homogeneous
Catalysis with Organometallic Compounds, Wiley-VCH, Weinheim, 2008, pp.
487–506.
[6] I. Ojima, in: S. Patai, Z. Rappoport (Eds.), Organic Silicon Compounds, John
Wiley & Sons, Chichester, 1989.
[7] I. Ojima, Z. Li, J. Zhu, in: Y. Apeloig, Z. Rappoport (Eds.), The Chemistry of
Organic Silicon Compounds, John Wiley & Sons, Chichester, 1998.
[8] A.K. Roy, Adv. Organomet. Chem. 55 (2007) 1–59.
[9] M.A. Brook, Silicon in Organic Organometallic and Polymer Chemistry, Wiley,
New York, 2000.
[10] J.A. Reichl, D.H. Berry, Adv. Organomet. Chem. 43 (1999) 197–265.
[11] D. Troegel, J. Stohrer, Coord. Chem. Rev. 255 (2011) 1440–1459.
[12] U. Deschler, P. Kleinschmit, P. Panster, Angew. Chem. Int. Ed. 25 (1986) 236–
252.
[13] J.L. Speier, J.A. Webster, G.H. Barnes, J. Am. Chem. Soc. 79 (1957) 974–979.
[14] J.W. Ryan, G.K. Menzie, J.L. Speier, J. Am. Chem. Soc. 82 (1960) 3601–3604.
[15] B. Marciniec, H. Maciejewski, W. Duczmal, R. Fiedorow, D. Kityn´ ski, Appl.
Organomet. Chem. 17 (2003) 127–134.
[16] M. Jankowiak, H. Maciejewski, J. Gulinski, J. Organomet. Chem. 690 (2005)
4478–4487.
[17] A.J. Chalk, J.F. Harrod, J. Am. Chem. Soc. 87 (1965) 16–21.
[18] M.A. Schroeder, M.S. Wrighton, J. Organomet. Chem. 128 (1977) 345–358.
[19] G.H. Wagner, US Patent 2637738, 1953 (to Union Carbide and Carbon
Corporation).
In contrast to the previously discussed oxidative addition step,
the similar polarities of the olefinic carbon atoms leading to the
undefined regioselectivity of the insertion reaction are supposed
to be an intrinsic property of allyl compounds, having the for-
mula CH2CHCH2X. Considering further that this reaction step is
mainly responsible for the formation of the byproducts, the de-
mand for appropriate catalysts to overcome this problem is obvi-
ous. The goal should be to develop catalysts, which either
electronically or sterically force the insertion reaction into the
right direction.
[20] A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, F.J. Timmers,
Organometallics 15 (1996) 1518–1520.
4. Conclusion
[21] G.R. Fulmer, A.J.M. Miller, N.H. Sherden, H.E. Gottlieb, A. Nudelman, B.M. Stoltz,
J.E. Bercaw, K.I. Goldberg, Organometallics 29 (2010) 2176–2179.
[22] G. Berthon-Gelloz, O. Buisine, J.-F. Brière, G. Michaud, S. Stérin, G. Mignani, B.
Tinant, J.-P. Declercq, D. Chapon, I.E. Markó, J. Organomet. Chem. 690 (2005)
6156–6168.
[23] D.V. McGrath, R.H. Grubbs, Organometallics 13 (1994) 224–235.
[24] R.C. van der Drift, M. Vailati, E. Bouwman, E. Drent, J. Mol. Catal. A: Chem. 159
(2000) 163–177.
[25] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J. Montgomery, J. A., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, 2004. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT.
[26] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
In summary, a comprehensive mechanistic picture of the hydro-
silylation of allyl compounds is given. Besides the product forma-
tion, which proceeds via the classical Chalk–Harrod mechanism,
three different reaction pathways leading to the observed byprod-
ucts have to be considered. It turned out that the contribution of
each path strongly depends on the employed reactants as well as
the catalyst. Nevertheless, two crucial elementary steps were iden-
tified, determining the overall product selectivity. The first one, oxi-
dative addition of the allyl compound vs. silane addition can be
controlled to a certain extent either by the choice of the allyl com-
pound itself, by choosing the right combination of silane and cata-
lyst for a given allyl compound or by varying the stoichiometry of
the reaction partners. Controlling the regioselectivity of the inser-
tion reaction, exhibiting the second selectivity-determining step,
however, turns out to be the real challenge of this catalytic reaction.
For this purpose, the mechanistic work presented herein, and in
particular, the identification of the selectivity-determining steps
opens up the way to a straightforward design of well-defined cata-
lysts to overcome the problem of byproduct formation during the
hydrosilylation of allyl compounds.
[27] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B.: Condens. Matter 37 (1988)
785–789.
[28] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994)
11623–11627.
[29] S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58 (1980) 1200–1211.
[30] W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56 (1972) 2257–2261.
[31] M. Dolg, H. Stoll, H. Preuss, R.M. Pitzer, J. Phys. Chem. 97 (1993) 5852–5859.
[32] M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 86 (1987) 866–872.
[33] H.B. Schlegel, J. Comput. Chem. 3 (1982) 214–218.
Acknowledgments
[34] G. Schaftenaar, J.H. Noordik, J. Comput. Aided Mol. Des. 14 (2000) 123–134.
[35] R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, R. Gilliland,
2003. GaussView, Version 3.09. Shawnee Mission, KS.
We are grateful for the financial support of the Wacker Chemie
AG and thank Prof. Peter Härter (TUM), Dr. Aroop K. Roy (Wacker
Chemical Cooperation), Dr. Jürgen Stohrer, Dr. Florian Hoffmann,
[36] B.D. Karstedt, US Patent 3 775 452, 1973 [to G.E. Company].