Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
(hetero)arene, the desired perfluoroalkylated product is
obtained. At this point, we do not know how the latter
reaction steps proceed and the involvement of radical
intermediates vide supra is likely.
Rev., 2008, 37, 320-330; (d) K. L. Kirk, J. DFOluIo: 1r0in.1e03C9h/Ce9mC.C, 021090716E,
127, 1013-1029.
5. (a) L. K. San, E. V. Bukovsky, I. V. Kuvychko, A. A. Popov, S. H.
Strauss and O. V. Boltalina, Chem. Eur. J., 2014, 20, 4373-4379;
(b) A. B. Cowell and C. Tamborski, J. Fluorine Chem., 1981, 17,
345-356.
6. M. Médebielle, S. Fujii and K. Kato, Tetrahedron, 2000, 56,
2655-2664.
7. (a) T. Shirai, M. Kanai and Y. Kuninobu, Org. Lett., 2018, 20,
1593-1596; (b) D. Leifert, D. G. Artiukhin, J. Neugebauer, A.
Galstyan, C. A. Strassert and A. Studer, Chem. Commun., 2016,
52, 5997-6000; (c) T. Kino, Y. Nagase, Y. Ohtsuka, K. Yamamoto,
D. Uraguchi, K. Tokuhisa and T. Yamakawa, J. Fluorine Chem.,
2010, 131, 98-105; (d) X.-T. Huang, Z.-Y. Long and Q.-Y. Chen, J.
Fluorine Chem., 2001, 111, 107-113; (e) B.-N. Huang and J.-T. Liu,
J. Fluorine Chem., 1993, 64, 37-46.
In conclusion, we have developed a general and practical Ni-
catalyzed perfluoroalkylation of (hetero)arenes using the
defined Ni-complex Ni2. This kind of catalyst is air- and
moisture-stable and thus can be easily handled. The reported
protocol allows the effective perfluoroalkylation of various
(hetero)arenes in moderate to good yields. Control
experiments revealed the importance of the activation of the
pre-catalyst as rate determining step. We believe these studies
will be also of interest for related Ni-catalyzed coupling
processes.
8. (a) Y. Ouyang, X. H. Xu and F. L. Qing, Angew. Chem. Int. Ed.
Engl., 2018, 57, 6926-6929; (b) E. Torti, S. Protti and M. Fagnoni,
Chem. Commun., 2018, 54, 4144-4147; (c) Y. Wang, J. Wang, G.
X. Li, G. He and G. Chen, Org. Lett., 2017, 19, 1442-1445; (d) J.
W. Beatty, J. J. Douglas, R. Miller, R. C. McAtee, K. P. Cole and C.
R. J. Stephenson, Chem, 2016, 1, 456-472; (e) M. Nappi, G.
Bergonzini and P. Melchiorre, Angew. Chem. Int. Ed., 2014, 53,
4921-4925; (f) N. J. Straathof, H. P. Gemoets, X. Wang, J. C.
Schouten, V. Hessel and T. Noel, ChemSusChem, 2014, 7, 1612-
1617; (g) L. Cui, Y. Matusaki, N. Tada, T. Miura, B. Uno and A.
Itoh, Adv. Synth. Catal., 2013, 355, 2203-2207; (h) M. Neumann,
S. Fuldner, B. König and K. Zeitler, Angew. Chem. Int. Ed., 2011,
50, 951-954.
We are grateful for financial support from Lonza, Switzerland,
BMBF and the State of Mecklenburg-Western Pommerania,
Germany. S.Z. thanks the Chinese Scholarship Council, China.
Keywords: Nickel
•
catalysis
•
perfluoroalkylation
•
(hetero)arenes • fluorinated compounds
Conflicts of interest
There are no conflicts to declare.
9. (a) C. P. Zhang, Z. L. Wang, Q. Y. Chen, C. T. Zhang, Y. C. Gu
and J. C. Xiao, Angew. Chem. Int. Ed., 2011, 50, 1896-1900; (b) L.
Chu and F.-L. Qing, Org. Lett., 2010, 12, 5060-5063; (c) G. G.
Dubinina, H. Furutachi and D. A. Vicic, J. Am. Chem. Soc., 2008,
130, 8600-8601; (d) J. Leroy, M. Rubinstein and C. Wakselman, J.
Fluorine Chem., 1985, 27, 291-298.
10. (a) X. Bao, L. Liu, J. Li and S. Fan, J. Org. Chem., 2018, 83, 463-
468; (b) S. Zhang, H. Neumann and M. Beller, Chem. Eur. J.,
2018, 24, 67-70; (c) K. Aikawa, Y. Nakamura, Y. Yokota, W. Toya
and K. Mikami, Chem. Eur. J., 2015, 21, 96-100; (d) T. Knauber, F.
Arikan, G. V. Röschenthaler and L. J. Goossen, Chem. Eur. J.,
2011, 17, 2689-2697; (e) K. A. McReynolds, R. S. Lewis, L. K. G.
Ackerman, G. G. Dubinina, W. W. Brennessel and D. A. Vicic, J.
Fluorine Chem., 2010, 131, 1108-1112; (f) M. Oishi, H. Kondo and
H. Amii, Chem. Commun., 2009, 1909-1911.
Notes and references
1. (a) Y. Zhu, J. Han, J. Wang, N. Shibata, M. Sodeoka, V. A.
Soloshonok, J. A. S. Coelho and F. D. Toste, Chem. Rev., 2018,
118, 3887-3964; (b) S. Barata-Vallejo, M. V. Cooke and A.
Postigo, ACS Catal., 2018, 8, 7287-7307; (c) C. Ni and J. Hu,
Chem. Soc. Rev., 2016, 45, 5441-5454; (d) H. Egami and M.
Sodeoka, Angew. Chem. Int. Ed., 2014, 53, 8294-8308; (e) V.
Bizet, R. Kowalczyk and C. Bolm, Chem. Soc. Rev., 2014, 43,
2426-2438; (f) T. Liang, C. N. Neumann and T. Ritter, Angew.
Chem. Int. Ed. Engl., 2013, 52, 8214-8264; (g) G. S. Prakash and
A. K. Yudin, Chem. Rev., 1997, 97, 757-786.
2. M. Yoshida, N. Kamigata, H. Sawada and M. Nakayama, J.
Fluorine Chem., 1990, 49, 1-20.
11. (a) L. Chu and F. L. Qing, J. Am. Chem. Soc., 2012, 134, 1298-
1304; (b) I. Popov, S. Lindeman and O. Daugulis, J. Am. Chem.
Soc., 2011, 133, 9286-9289; (c) W.-Y. Huang, J.-T. Liu and J. Li, J.
Fluorine Chem., 1995, 71, 51-54; (d) N. Kamigata, T. Ohtsuka, T.
Fukushima, M. Yoshida and T. Shimizu, J. Chem. Soc., Perkin
Trans. 1, 1994, 1339-1346.
12. T. Fuchikami and I. Ojima, J. Fluorine Chem., 1983, 22, 541-
556.
13. R. N. Loy and M. S. Sanford, Org. Lett., 2011, 13, 2548-2551.
14. L. He, K. Natte, J. Rabeah, C. Taeschler, H. Neumann, A.
Brückner and M. Beller, Angew. Chem. Int. Ed., 2015, 54, 4320-
4324.
15. (a) D. D. Beattie, T. Schareina and M. Beller, Org. Biomol.
Chem., 2017, 15, 4291-4294; (b) E. A. Standley and T. F. Jamison,
J. Am. Chem. Soc., 2013, 135, 1585-1592.
16. Q.-L. Zhou and Y.-Z. Huang, J. Fluorine Chem., 1988, 39, 87-
98.
17. (a) Y. Ye, N. D. Ball, J. W. Kampf and M. S. Sanford, J. Am.
Chem. Soc., 2010, 132, 14682-14687; (b) G. G. Dubinina, W. W.
Brennessel, J. L. Miller and D. A. Vicic, Organomet., 2008, 27,
3933-3938; (c) V. V. Grushin and W. J. Marshall, J. Am. Chem.
Soc., 2006, 128, 12644-12645.
3. (a) S. Barata-Vallejo, S. M. Bonesi and A. Postigo, RSC Adv.,
2015, 5, 62498-62518; (b) T. Bříza, V. Král, P. Martásek and R.
Kaplánek, J. Fluorine Chem., 2008, 129, 235-247; (c) T.
Umemoto, J. Fluorine Chem., 2000, 105, 211-213; (d) V.
Krishnamurti, S. B. Munoz, X. Ispizua-Rodriguez, J. Vickerman, T.
Mathew and G. S. Prakash, Chem. Commun., 2018, 54, 10574-
10577; (e) J. A. Pike and J. W. Walton, Chem. Commun., 2017,
53, 9858-9861; (f) X. Fang, P. Yu and B. Morandi, Science, 2016,
351, 832-836; (g) K. Natte, R. V. Jagadeesh, L. He, J. Rabeah, J.
Chen, C. Taeschler, S. Ellinger, F. Zaragoza, H. Neumann, A.
Brückner and M. Beller, Angew. Chem. Int. Ed., 2016, 55, 2782-
2786; (h) J. Xie, T. Zhang, F. Chen, N. Mehrkens, F. Rominger, M.
Rudolph and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55,
2934-2938; (i) Y. Kuninobu, M. Nagase and M. Kanai, Angew.
Chem. Int. Ed., 2015, 54, 10263-10266; (j) F. Sladojevich, E.
McNeill, J. Borgel, S. L. Zheng and T. Ritter, Angew. Chem. Int.
Ed., 2015, 54, 3712-3716; (k) N. D. Litvinas, P. S. Fier and J. F.
Hartwig, Angew. Chem. Int. Ed., 2012, 51, 536-539; (l) E. J. Cho,
T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson and S. L.
Buchwald, Science, 2010, 328, 1679-1681.
4. (a) N. V. Kirij, A. A. Filatov, G. Y. Khrapach and Y. L.
Yagupolskii, Chem. Commun., 2017, 53, 2146-2149; (b) Y. Macé
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins