Photochemistry and Photobiology, 2002, 76(1) 121
in tetrathiafulvalene–porphyrin–fullerene molecular triads. Helv.
Chim. Acta 84, 2765–2783.
10. Davis, F. S., G. A. Nemeth, D. M. Anjo, L. R. Makings, D.
Gust and T. A. Moore (1987) Digital back off for computer
controlled flash spectrometers. Rev. Sci. Instrum. 58, 1629–
1631.
cence lifetime, and no charge-separated species were ob-
served.
CONCLUSION
Triad 1 exemplifies a compact molecular architecture in
which two carotenoid pigments are coupled to a single tet-
rapyrrole as axial ligands to a centrally coordinated Si atom.
This construct demonstrates highly efficient singlet energy
transfer from the carotenoids to the tetrapyrrole and fast trip-
let energy transfer in the reverse direction. In polar solvents,
photoinduced electron transfer from one of the attached ca-
rotenoids to the S1 level of the phthalocyanine is efficient
and yields a relatively long-lived charge-separated state. It
is anticipated that this new class of artificial photosynthetic
structures will form the basis of antenna systems and charge
relays for artificial reaction centers.
11. Cardoso, S. L., D. E. Nicodem, T. A. Moore, A. L. Moore and
D. Gust (1996) Synthesis and fluorescence quenching studies of
a series of carotenoporphyrins with carotenoids of various
lengths. J. Braz. Chem. Soc. 7, 19–30.
12. Janson, T. R., A. R. Kane, J. F. Sullivan, K. Knox and M. E.
Kenney (1969) Ring-current effect of the phthalocyanine ring.
J. Am. Chem. Soc. 91, 5210–5214.
13. Koyama, T., T. Suzuki, K. Hanabusa, H. Shirai and N. Kobay-
ashi (1994) A comparison of the loop-current effect of silicon
phthalocyanine and silicon naphthalocyanine rings on their axial
ligands. Inorg. Chim. Acta 218, 41–45.
14. Silver, J., C. S. Frampton, G. R. Fern, D. A. Davies, J. R. Miller
and J. L. Sosa-Sanchez (2001) Novel seven coordination ge-
ometry of Sn(IV): crystal structures of phthalocyaninato
bis(undecylcarboxylato)Sn(IV), its Si(IV) analogue, and phthal-
ocyaninato bis(chloro)silicon(IV). The electrochemistry of the
Si(IV) analogue and related compounds. Inorg. Chem. 40,
5434–5439.
15. Silver, J., J. L. Sosa-Sanchez and C. S. Frampton (1998) Struc-
ture, electrochemistry, and properties of bis(ferrocenecarbo-
xylato)(phthalocyaninato)silicon(IV) and its implications for (Si
(Pc)O)n polymer chemistry. Inorg. Chem. 37, 411–417.
16. Walla, P. J., P. A. Linden, C.-P. Hsu, G. D. Scholes and G. R.
Fleming (2000) Femtosecond dynamics of the forbidden carot-
enoid S1 state in light-harvesting complexes of purple bacteria
observed after two-photon excitation. PNAS 97, 10808–10813.
17. Krueger, B. P., G. D. Scholes, R. Jimenez and G. R. Fleming
(1998) Electronic excitation transfer from carotenoid to bacte-
riochlorophyll in the purple bacterium Rhodopseudomonas aci-
dophila. J. Phys. Chem. B 102, 2284–2292.
18. Shreve, A. P., J. K. Trautman, H. A. Frank, T. G. Owens and
A. C. Albrecht (1991) Femtosecond energy-transfer processes
in the B800–850 light-harvesting complex of Rhodobacter
sphaeroides 2.4.1. Biochim. Biophys. Acta 1058, 280–288.
19. Damjanovic´, A., T. Ritz and K. Schulten (1999) Energy transfer
between carotenoids and bacteriochlorophylls in light-harvest-
ing complex II of purple bacteria. Phys. Rev. E 59, 3293–3311.
Acknowledgments This work was supported by the U.S. Depart-
ment of Energy (DE-FG03-93ER14404), the Swedish Natural Sci-
ence Research Council (NFR) and the Kempe Foundation. We thank
Roche for the generous gift of carotenoid samples. This is publica-
tion 506 from the ASU Center for the Study of Early Events in
Photosynthesis.
REFERENCES
1. Frank, H. A. and R. J. Cogdell (1996) Carotenoids in photosyn-
thesis. Photochem. Photobiol. 63, 257–264.
2. Gust D., A. L. Moore and T. A. Moore (2001) Covalently linked
systems containing porphyrin units. In Handbook on Electron
Transfer in Chemistry, Vol. 3 (Edited by V. Balzani), pp. 272–
336. Wiley-VCH, Weinheim, Germany.
3. Gust, D., T. A. Moore, A. L. Moore, C. Devadoss, P. A. Liddell,
R. Hermant, R. A. Nieman, L. J. Demanche, J. M. DeGraziano
and I. Gouni (1992) Triplet and singlet energy transfer in car-
otene-porphyrin dyads: the role of the linkage bonds. J. Am.
Chem. Soc. 114, 3590–3603.
4. Debreczeny M. P., M. R. Wasielewski, S. Shinoda and A. Osuka
(1997) Singlet–singlet energy transfer mechanisms in covalent-
ly-linked fucoxanthin– and zeaxanthin–pyropheophorbide mol-
ecules. J. Am. Chem. Soc. 119, 6407–6414.
20. Sashima, T., Y. Koyama, T. Yamada, and H. Hashimoto (2000)
Ϫ
The 1Buϩ, 1BuϪ, and 2Ag energies of crystalline lycopene,

-
carotene, and mini-9--carotene as determined by resonance-
Ϫ
5. Bahr, J. L., G. Kodis, L. de la Garza, S. Lin, A. L. Moore, T.
A. Moore and D. Gust (2001) Photoswitched singlet energy
transfer in a porphyrin–spiropyran dyad. J. Am. Chem. Soc. 123,
7124–7133.
raman excitation profiles: Dependence of the 1Bu state energy
on the conjugation length. J. Phys. Chem. B 104, 5011–5019.
21. Tavan, P. and K. Schulten (1987) Electronic excitations in finite
and infinite polyenes. Phys. Rev. B 36, 4337–4358.
22. Peterman, E. J. G., C. C. Grandinaru, F. Calkoen, J. C. Borst,
R. van Grondelle and H. van Amerongen (1997) Xanthophylls
in light-harvesting complex II of higher plants: light harvesting
and triplet quenching. Biochemistry 36, 12208–12215.
23. He, Z., V. Sundstro¨m and T. Pullerits (2001) Excited state of
carotenoids in LH2: an ab initio study. Chem. Phys. Lett. 334,
159–167.
6. Macpherson, A. N. and T. Gillbro (1998) Solvent dependence
of the ultrafast S2–S1 internal conversion rate of -carotene. J.
Phys. Chem. A 102, 5049–5058.
7. Freiberg, A., K. Timpmann, S. Lin and N. W. Woodbury (1998)
Exciton relaxation and transfer in the LH2 antenna network of
photosynthetic bacteria. J. Phys. Chem. B 102, 10974–10982.
8. Macpherson, A. N., J. B. Arellano, N. J. Fraser, R. J. Cogdell
and T. Gillbro (2001) Efficient energy transfer from the carot-
enoid S2 state in a photosynthetic light-harvesting complex. Bio-
phys. J. 80, 923–930.
24. Osuka, A., T. Kume, G. W. Haggquist, T. Ja´vorfi, J. C. Lima,
E. Melo and K. Razi Naqvi (1999) Photophysical characteristics
of two model antenna systems: a fucoxanthin–pyropheophorbi-
de dyad and its peridinin analogue. Chem. Phys. Lett. 313, 499–
504.
9. Liddell, P. A., G. Kodis, L. de la Garza, J. L. Bahr, A. L. Moore,
T. A. Moore and D. Gust (2001) Photoinduced electron transfer