4
[13](a) M. Zhang, S. Zhang, C. Pan and F. Chen. Synth. Commun. 42
system (green circle), flavin II oxidizes the thiol and HI under
aerobic conditions to produce the disulfide and I2 along with
simultaneous generation of flavin IIred. Next, the reductive flavin
IIred is oxidized to hydroperoxyflavin IIOOH by oxygen. Finally,
IIOOH could also promote the oxidation of thiol and HI, and at the
same time, itself got reduced to flavin II to complete the
cycle.[21] Therefore, the overall reaction consumes oxygen and
produces H2O as the only byproduct.
(2012) 2844-2853;
(b) M. Iwasaki, M. Iyanaga, Y. Tsuchiya, Y. Nishimura, W. Li, Z. Li and
Y. Nishihara. Chem. - Eur. J. 20 (2014) 2459-2462;
(c) P. Saravanan and P. Anbarasan. Org. Lett. 16 (2014) 848-851;
(d) Y. Yang, W. Hou, L. Qin, J. Du, H. Feng, B. Zhou and Y. Li. Chem. -
Eur. J. 20 (2014) 416-420.
[14]C.-L. Sun and Z.-J. Shi. Chem. Rev. 114 (2014) 9219-9280.
[15](a) C. D. Prasad, S. J. Balkrishna, A. Kumar, B. S. Bhakuni, K. Shrimali,
S. Biswas and S. Kumar. J. Org. Chem. 78 (2013) 1434-1443;
(b) S. Saba, J. Rafique and A. L. Braga. Catal. Sci. Technol. 6 (2016)
3087-3098;
(c) J. Rodrigues, S. Saba, A. C. Joussef, J. Rafique and A. L. Braga.
Asian J. Org. Chem. 7 (2018) 1819-1824.
[16]Z.-b. Xu, G.-p. Lu and C. Cai. Org. Biomol. Chem. 15 (2017) 2804-2808.
[17](a) X. Kang, R. Yan, G. Yu, X. Pang, X. Liu, X. Li, L. Xiang and G.
Huang. J. Org. Chem. 79 (2014) 10605-10610;
Conclusions
In conclusion, we report an aerobic oxidative C-H
sulfenylation of anilines with thiols catalyzed by flavin/I2 for the
first time. This metal-free reaction uses molecular oxygen as the
only terminal oxidant and produces environmentally-friendly
H2O as the only byproduct. Furthermore, the reaction was
performed successfully under mild conditions with high atom-
economy and excellent functional group compatibility. Further
research on the practical applications of this method is in
progress in our lab.
(b) X. Pang, L. Xiang, X. Yang and R. Yan. Adv. Synth. Catal. 358
(2016) 321-325;
(c) D. S. Raghuvanshi and N. Verma. RSC Adv. 7 (2017) 22860-22868.
[18]K.-J. Liu, J.-H. Deng, J. Yang, S.-F. Gong, Y.-W. Lin, J.-Y. He, Z. Cao
and W.-M. He. Green Chem. 22 (2020) 433-438.
[19]D. Yang, K. Yan, W. Wei, J. Zhao, M. Zhang, X. Sheng, G. Li, S. Lu and
H. Wang. J. Org. Chem. 80 (2015) 6083-6092.
[20]H.-H. Wang, T. Shi, W.-W. Gao, Y.-Q. Wang, J.-F. Li, Y. Jiang, Y. S.
Hou, C. Chen, X. Peng and Z. Wang. Chem. Asian J. 12 (2017) 2675-
2679.
Conflicts of interest
[21](a) S. Murahashi, T. Oda and Y. Masui. J. Am. Chem. Soc. 111 (1989)
5002-5003;
There are no conflicts to declare.
Acknowledgements
(b) Y. Imada, H. Iida, S. Ono and S.-I. Murahashi. J. Am. Chem. Soc. 125
(2003) 2868-2869;
(c) S.-I. Murahashi, D. Zhang, H. Iida, T. Miyawaki, M. Uenaka, K.
Murano and K. Meguro. Chem. Commun. 50 (2014) 10295-10298.
[22](a) T. Ishikawa, M. Kimura, T. Kumoi and H. Iida. ACS Catal. 7 (2017)
4986-4989;
We gratefully acknowledge the National Natural Science
Foundation of China (grant number 21506191 and 21676252)
for financial support.
(b) H. Iida, R. Demizu and R. Ohkado. J. Org. Chem. 83 (2018) 12291-
12296;
(c) R. Ohkado, T. Ishikawa and H. Iida. Green Chem. 20 (2018) 984-988;
(d) K. Tanimoto, R. Ohkado and H. Iida. J. Org. Chem. 84 (2019) 14980-
14986.
References
[1] (a) S. Sciabola, E. Carosati, M. Baroni and R. Mannhold. J. Med. Chem.
48 (2005) 3756-3767;
[23](a) X. Jiang, J. Chen, W. Zhu, K. Cheng, Y. Liu, W.-K. Su and C. Yu. J.
Org. Chem. 82 (2017) 10665-10672;
(b) T. Nakazawa, J. Xu, T. Nishikawa, T. Oda, A. Fujita, K. Ukai, R. E.
P. Mangindaan, H. Rotinsulu, H. Kobayashi and M. Namikoshi. J. Nat.
Prod. 70 (2007) 439-442;
(c) F. Miljković and J. Bajorath. ACS Omega 3 (2018) 3113-3119;
(d) C. Zhao, K. P. Rakesh, L. Ravidar, W.-Y. Fang and H.-L. Qin. Eur. J.
Med. Chem. 162 (2019) 679-734.
(b) X. Jiang, C. Zheng, L. Lei, K. Lin and C. Yu. Eur. J. Org. Chem.
(2018) 1437-1442;
(c) L. Zhang, X. Zheng, J. Chen, K. Cheng, L. Jin, X. Jiang and C. Yu.
Org. Chem. Front. 5 (2018) 2969-2973;
(d) J. Chen, L. Jin, J. Zhou, X. Jiang and C. Yu. Tetrahedron Lett. 60
(2019) 2054-2058;
(e) X. Jiang, B. Zhu, K. Lin, G. Wang, W.-K. Su and C. Yu. Org.
Biomol. Chem. 17 (2019) 2199-2203;
(f) X. Jiang, W. Zhu, L. Yang, Z. Zheng and C. Yu. Eur. J. Org. Chem.
(2019) 2268-2274;
(g) X. Jiang, L. Yang, Z. Ye, X. Du, L. Fang, Y. Zhu, K. Chen, J. Li and
C. Yu. Eur. J. Org. Chem. (2020) 1687-1694.
(h) X. Jiang, Z. Zhao, Z. Shen, K. Chen, L. Fang and C. Yu. Eur. J. Org.
Chem. 10.1002/ejoc.202000508
[2] H. Mutlu, E. B. Ceper, X. Li, J. Yang, W. Dong, M. M. Ozmen and P.
Theato. Macromol. Rapid Commun. 40 (2019) 1800650.
[3] (a) Y. Zhou, W.-J. Liu, Y. Ma, H. Wang, L. Qi, Y. Cao, J. Wang and J.
Pei. J. Am. Chem. Soc. 129 (2007) 12386-12387;
(b) T. Mori, T. Nishimura, T. Yamamoto, I. Doi, E. Miyazaki, I. Osaka
and K. Takimiya. J. Am. Chem. Soc. 135 (2013) 13900-13913.
[4] (a) I. P. Beletskaya and V. P. Ananikov. Chem. Rev. 111 (2011) 1596-
1636;
(b) C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. A. Hor and X. Liu. Chem.
Soc. Rev. 44 (2015) 291-314.
[5] (a) I. M. Yonova, C. A. Osborne, N. S. Morrissette and E. R. Jarvo. J.
Org. Chem. 79 (2014) 1947-1953;
(b) Q. Feng, D. Chen, M. Hong, F. Wang and S. Huang. J. Org. Chem.
83 (2018) 7553-7558.
[6] J.-H. Cheng, C. Ramesh, H.-L. Kao, Y.-J. Wang, C.-C. Chan and C.-F.
Lee. J. Org. Chem. 77 (2012) 10369-10374.
[7] (a) A. Correa, M. Carril and C. Bolm. Angew. Chem. Int. Ed. 47 (2008)
2880-2883;
(b) W.-Y. Wu, J.-C. Wang and F.-Y. Tsai. Green Chem. 11 (2009) 326-
329.
[8] Z. Jiang, J. She and X. Lin. Adv. Synth. Catal. 351 (2009) 2558-2562.
[9] Y.-C. Wong, T. T. Jayanth and C.-H. Cheng. Org. Lett. 8 (2006) 5613-
5616.
[10](a) F. Y. Kwong and S. L. Buchwald. Org. Lett. 4 (2002) 3517-3520;
(b) S. Bhadra, B. Sreedhar and B. C. Ranu. Adv. Synth. Catal. 351 (2009)
2369-2378;
[24]G. Liu, S. Hou and J. Xu. Org. Biomol. Chem. 17 (2019) 10088-10096.
[25]F. A. Davis, A. J. Friedman, E. W. Kluger, E. B. Skibo, E. R. Fretz, A. P.
Milicia, W. C. LeMasters, M. D. Bentley, J. A. Lacadie and I. B.
Douglass. J. Org. Chem. 42 (1977) 967-972.
[26](a) M. L. Moore and T. B. Johnson. J. Am. Chem. Soc. 57 (1935) 1517-
1519;
(b) M. L. Moore and T. B. Johnson. J. Am. Chem. Soc. 57 (1935) 2234-
2236;
(c) M. L. Moore and T. B. Johnson. J. Am. Chem. Soc. 58 (1936) 1960-
1961;
(d) M. L. Moore and T. B. Johnson. J. Am. Chem. Soc. 58 (1936) 1091-
1094;
(e) F. A. Davis, E. R. Fretz and C. J. Horner. J. Org. Chem. 38 (1973)
690-695;
(f) F. A. Davis, C. J. Horner, E. R. Fretz and J. F. Stackhouse. J. Org.
Chem. 38 (1973) 695-699.
(c) C.-K. Chen, Y.-W. Chen, C.-H. Lin, H.-P. Lin and C.-F. Lee. Chem.
Commun. 46 (2010) 282-284.
Declaration of interests
[11]Y. Zhang, K. C. Ngeow and J. Y. Ying. Org. Lett. 9 (2007) 3495-3498.
[12]M. Arisawa, T. Suzuki, T. Ishikawa and M. Yamaguchi. J. Am. Chem.
Soc. 130 (2008) 12214-12215.
☒ The authors declare that they have no known
competing financial interests or personal