2846
C. D. Magnusson, G. G. Haraldsson / Tetrahedron: Asymmetry 21 (2010) 2841–2847
distilled toluene (15 ml), methyl iodide (843
l
l, 13.49 mmol) was
CH2OH), 3.63 (dd, J = 11.5, 5.2 Hz, 1H, CH2OH), 3.61 (dd, J = 10.0,
3.8 Hz, 1H, HOCHCH2OCH2), 3.56 (dd, J = 10.3, 3.6 Hz, 1H, OCH2-
CHOCH3), 3.53 (dd, J = 9.9, 6.2 Hz, 1H, HOCHCH2OCH2), 3.47 (dd,
J = 10.5, 6.0 Hz, 1H, OCH2CHOCH3), 3.39 (s, 3H, OCH3), 3.35–3.30
(m, 1H, CHOCH3), 1.54–1.41 (m, 2H, CH3OCHCH2C), 1.37–1.18 (m,
24H, CH2), 0.87 (br t, 3H, J = 6.9 Hz, CH3) ppm; 13C NMR
(100 MHz, CDCl3–D2O, 7:0.1): d 80.37 (CHOCH3), 73.51 (OCH2-
CHOCH3), 73.34 (HOCHCH2OCH2), 70.45 (CHOH), 63.86 (CH2OH),
57.26 (OCH3), 31.91, 30.80 (CH3OCHCH2C), 29.77, 29.68 (2),
29.66, 29.64 (2), 29,58, 29.56, 29.34, 25,33, 22.68 (CH2CH3), 14.10
(CH3) ppm.
added, and the resulting mixture stirred for 17 h at room temper-
ature under an argon atmosphere. The reaction mixture was fil-
tered over a small cake of silica gel and eluted with diethyl
ether. Removal of volatile constituents in vacuo afforded the pure
compound 3 as a slightly yellowish oil (480 mg, 93% yield).
½
a 2D0
ꢂ
¼ ꢀ13:1 (c 0.83, ethanol); IR(ZnSe) 2922 (C–H), 1657 (C@C),
1102 and 1055 (C–O–C) cmꢀ1; HRMS (APCI): m/z calcd for
23H44O4 + NH4: 402.3578; found 402.3576 amu. 1H NMR
C
(400 MHz, CDCl3): d 5.51–5.44 (m, 1H, C@CHCH2CH2), 5.40–5.33
(m, 1H, CHCH2CH@C), 4.26 (quintet, J = 5.9 Hz, 1H, CHOC(CH3)2),
4.05 (dd, J = 8.3, 6.4 Hz, 1H, (CH3)2COCH2), 3.76 (dd, J = 8.3,
6.3 Hz, 1H, (CH3)2COCH2), 3.57 (dd, J = 10.0, 5.3 Hz, 1H,
(CH3)2COCHCH2O), 3.50 (d, J = 5.0 Hz, 2H, OCH2CHOCH3), 3.48
(dd, J = 10.0, 5.8 Hz, 1H, (CH3)2COCHCH2O), 3.41 (s, 3H, OCH3),
3.37 (quintet, J = 5.4 Hz, 1H, CHOCH3), 2.27 (t, J = 6.4 Hz, 2H,
CH3OCHCH2C@), 2.02 (quartet (br), J = 6.8 Hz, 2H, @CCH2CH2),
1.41 (s, 3H, (CH3)2CO), 1.36 (s, 3H, (CH3)2CO), 1.33–1.20 (m, 18H,
CH2), 0.88 (br t, 3H, J = 6.9 Hz, CH3) ppm; 13C NMR (100 MHz,
CDCl3) d 132.43 (C@CHCH2CH2), 124.55 (CHCH2CH@C), 109.30
((CH3)2C), 80.08 (CHOCH3), 74.65 (CHOC(CH3)2), 73.25 (OCH2-
CHOCH3), 72.37 ((CH3)2COCHCH2O), 66.90 ((CH3)2COCH2), 57.46
(OCH3), 31.91, 29.67 (CHOHCH2C@), 29.64 (2), 29.59, 29.56,
29.36, 29.34, 28.85 (CH3OCHCH2C@), 27.38 (@CCH2CH2), 26.76
((CH3)2CO), 25.42 ((CH3)2CO), 22.68 (CH2CH3), 14.11 (CH3) ppm.
4.1.7. Preparation of (R,R)-MTPA ester of (R)-6
The (R)-MTPA ester of 6, obtained from (R)-epichlorohydrin was
prepared according to the reported method32 and purified by pre-
parative TLC with ethyl acetate/petroleum ether (2.5:97.5) as an
eluent affording the Mosher ester product as a clear liquid. 1H
NMR (400 MHz, CDCl3): d 7.60–7.55 (m, 2H, @C–H), 7.43–7.37
(m, 3H, @C–H), 5.34–5.28 (m, 1H, CH2CHCH2), 3.76 (dd, J = 11.9,
4.7 Hz, 1H, CH2Cl), 3.69 (dd, J = 11.9, 5.9 Hz, 1H, CH2Cl), 3.59 (m,
3H, OCH3), 2.72 (ddt, J = 17.1, 6.3, 2.4 Hz, 1H, CHCH2C„), 2.65
(ddt, J = 16.7, 5.8, 2.4 Hz, 1H, „CCH2), 2.13 (tt, J = 7.1, 2.4 Hz, 2H,
„CCH2), 1.45 (quintet, J = 7.2, 2H, „CCH2CH2), 1.38–1.19 (m,
16H, CH2), 0.88 (br t, J = 6.9 Hz, 3H, CH3) ppm.
4.1.8. Preparation of (R,S)-MTPA ester of (S)-6
4.1.5. Synthesis of (Z)-(20R)-1-O-(20-methoxyhexadec-40-enyl)-
sn-glycerol 1
A procedure identical to the one described for the preparation of
the (R,R,)-MTPA ester of 6 was followed in detail using (S)-6. Ad-
duct (S)-6 was obtained from (S)-epichlorohydrin by the same
methodology previously described for 6. 1H NMR (400 MHz,
CDCl3): d 7.61–7.54 (m, 2H, @C–H), 7.43–7.37 (m, 3H, @C–H),
5.31–5.26 (m, 1H, CH2CHCH2), 3.88 (dd, J = 12.0, 3.8 Hz, 1H, CH2Cl),
3.77 (dd, J = 12.0, 6.4 Hz, 1H, CH2Cl), 3.60 (m, 3H, OCH3), 2.58 (m,
2H, CHCH2C„), 2.07 (tt, J = 7.0, 2.4 Hz, 2H, „CCH2), 1.44 (quintet,
J = 7.0, 2H, „CCH2CH2), 1.37–1.17 (m, 16H, CH2), 0.88 (br t,
J = 6.9 Hz, 3H, CH3) ppm.
To a solution of (Z)-(20R)-1-O-(2’methoxyhexadec-40-enyl)-2,3-
O-isopropylidene-sn-glycerol 3 (359 mg; 0.933 mmol) in 96% etha-
nol (3 ml), wet Amberlyst 15 (63 mg) was added and refluxed for
5 h and 30 min. After filtration of Amberlyst the solution was con-
centrated in vacuo, affording the pure compound as slightly yel-
lowish oil (317 mg, 99% yield). ½a D20
¼ ꢀ12:5 (c 0.84, chloroform);
ꢂ
IR(ZnSe) 3402 (O–H), 3010 (@C–H cis), 2921 (C–H), 1655 (C@C),
1082 and 1046 (C–O–C) cmꢀ1; HRMS (APCI): m/z calcd for
C
20H40O4 + H: 345.2999; found 345.2999 amu. 1H NMR (400 MHz,
CDCl3–D2O, 7:0.1) d 5.52–5.45 (m, 1H, C@CHCH2CH2), 5.38–5.31
(m, 1H, CHCH2CH@C), 3.88–3.83 (m, 1H, CHOH), 3.69 (dd,
J = 11.5, 4.0 Hz, 1H, CH2OH), 3.63 (dd, J = 11.5, 5.2 Hz, 1H, CH2OH),
3.61 (dd, J = 10.0, 3.7 Hz, 1H, HOCHCH2OCH2), 3.57 (dd, J = 10.4,
3.2 Hz, 1H, OCH2CHOCH3), 3.53 (dd, J = 10.0, 6.3 Hz, 1H, HOCH-
CH2OCH2), 3.46 (dd, J = 10.5, 6.2 Hz, 1H, OCH2CHOCH3), 3.42 (s,
3H, OCH3), 3.40–3.35 (m, 1H, CHOCH3), 2.35–2.21 (m, 2H,
CH3OCHCH2C@), 2.02 (quartet (br), J = 6.8 Hz, 2H, @CCH2CH2),
1.35–1.20 (m, 18H, CH2), 0.88 (br t, 3H, J = 6.9 Hz, CH3) ppm; 13C
Acknowledgements
Lysi ehf in Iceland and the Icelandic Research Fund are acknowl-
edged for the financial support. Dr. Sigridur Jonsdottir and Dr.
Sigurdur V. Smarason at University of Iceland are acknowledged
for high-resolution 2D NMR and accurate MS measurements.
References
1. Carballeira, N. M. Prog. Lipid Res. 2002, 41, 437–456.
2. Karnovsky, M. L.; Rapson, W. S.; Black, M. S. J. Soc. Chem. Ind. 1946, 65, 425–428.
3. Wetherbee, B. M.; Nichols, P. D. Compd. Biochem. Physiol. B 2000, 125, 511–521.
4. Snyder, F.; Wood, R. Cancer Res. 1969, 29, 251–257.
5. Pugliese, P. T.; Jordan, K.; Cederberg, H.; Brohult, J. J. Altern. Complement Med.
1998, 4, 87–99.
NMR (100 MHz, CDCl3–D2O, 7:0.1)
d 132.74 (C=CHCH2CH2),
124.15 (CHCH2CH@C), 80.22 (CHOCH3), 73.39 (HOCHCH2OCH2),
73.14 (OCH2CHOCH3), 70.44 (CHOH), 63.85 (CH2OH), 57.23
(OCH3), 31.90, 29.66, 29.63 (2), 29.55 (2), 29.34 (2), 28.36
(CH3OCHCH2C@), 27.37 (@CCH2CH2), 22.68 (CH2CH3), 14.10 (CH3)
ppm.
6. Deniau, A. L.; Mosset, P.; Pedrono, F.; Mitre, R.; Le Bot, D.; Legrand, A. B. Mar.
Drugs 2010, 8, 2175–2184.
7. Blank, M. L.; Cress, E. A.; Smith, Z. L.; Snyder, F. Lipids 1991, 26, 166–169.
8. Das, A. K.; Holmes, R. D.; Wilson, G. N.; Hajra, A. K. Lipids 1992, 27, 401–405.
9. Hichami, A.; Duroudier, V.; Leblais, V.; Vernhet, L.; Le Goffic, F.; Ninio, E.;
Legrand, A. Eur. J. Biochem. 1997, 250, 242–248.
10. Bakes, M. J.; Nichols, P. D. Compd. Biochem. Physiol. B 1995, 110, 267–275.
11. Deprez, P. P.; Volkman, J. K.; Davenport, S. R. Aust. J. Mar. Fresh. Res. 1990, 41,
375–387.
12. Hayashi, K.; Takagi, T. B. Jpn. Soc. Sci. Fish. 1982, 48, 1345–1351.
13. Hallgren, B.; Stallberg, G. Acta Chem. Scand. 1967, 21, 1519–1529.
14. Hallgren, B.; Niklasson, A.; Stallberg, G.; Thorin, H. Acta Chem. Scand. B 1974, 28,
1029–1034.
15. Stallberg, G. A. M. Acta Chem. Scand. 1990, 44, 368–376.
16. Hallgren, B.; Stallberg, G.; Thorin, H. Acta Chem. Scand. 1971, 25, 3781–3784.
17. Boeryd, B.; Hallgren, B.; Stallber, G. Brit. J. Exp. Pathol. 1971, 52, 221–230.
18. Hallgren, B.; Stallberg, G.; Boeryd, B. Prog. Chem. Fats Other Lipids 1978, 16, 45–
58.
4.1.6. Preparation of (20R)-1-O-(20-methoxyhexadecyl)-sn-
glycerol 2
A suspension of (Z)-(20R)-1-O-(20-methoxyhexadec-40-enyl)-sn-
glycerol 1 (35 mg, 0.102 mmol) and 10% Pd in activated charcoal
(7 mg) in absolute ethanol (25 ml) was placed in a PARR reactor
under a hydrogen pressure (1 atm) and stirred for 2 h and 30 min
at room temperature. The reaction mixture was filtered over a
pad of Celite and flushed with diethyl ether. Solvent removal in va-
cuo afforded the pure product 2 as a white wax (34 mg, 96% yield).
½
a 2D0
ꢂ
¼ ꢀ3:0 (c 0.89, chloroform); IR(KBr) 3420 (O–H), 2918 (C–H),
1121 (C–O–C) cmꢀ1; HRMS (ESI): m/z calcd for C20H42O4 + H:
347.3156; found 347.3159 amu. 1H NMR (400 MHz, CDCl3–D2O,
7:0.1): d 3.88–3.83 (m, 1H, CHOH), 3.69 (dd, J = 11.5, 3.9 Hz, 1H,
19. Wang, H.; Rajagopal, S.; Reynolds, S.; Cederberg, H.; Chakrabarty, S. J. Cell.
Physiol. 1999, 178, 173–178.